185 resultados para Topics of global scope
Resumo:
Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (∼10–100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface‐subsurface interactions due to fine‐scale topography and vegetation; improved representation of land‐atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a “grand challenge” to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.
Resumo:
Global agreements have proliferated in the past ten years. One of these is the Kyoto Protocol, which contains provisions for emissions reductions by trading carbon through the Clean Development Mechanism (CDM). The CDM is a market-based instrument that allows companies in Annex I countries to offset their greenhouse gas emissions through energy and tree offset projects in the global South. I set out to examine the governance challenges posed by the institutional design of carbon sequestration projects under the CDM. I examine three global narratives associated with the design of CDM forest projects, specifically North – South knowledge politics, green developmentalism, and community participation, and subsequently assess how these narratives match with local practices in two projects in Latin America. Findings suggest that governance problems are operating at multiple levels and that the rhetoric of global carbon actors often asserts these schemes in one light, while the rhetoric of those who are immediately involved locally may be different. I also stress the alarmist’s discourse that blames local people for the problems of environmental change. The case studies illustrate the need for vertical communication and interaction and nested governance arrangements as well as horizontal arrangements. I conclude that the global framing of forests as offsets requires better integration of local relationships to forests and their management and more effective institutions at multiple levels to link the very local to the very large scale when dealing with carbon sequestration in the CDM.
Resumo:
Complexity is integral to planning today. Everyone and everything seem to be interconnected, causality appears ambiguous, unintended consequences are ubiquitous, and information overload is a constant challenge. The nature of complexity, the consequences of it for society, and the ways in which one might confront it, understand it and deal with it in order to allow for the possibility of planning, are issues increasingly demanding analytical attention. One theoretical framework that can potentially assist planners in this regard is Luhmann's theory of autopoiesis. This article uses insights from Luhmann's ideas to understand the nature of complexity and its reduction, thereby redefining issues in planning, and explores the ways in which management of these issues might be observed in actual planning practice via a reinterpreted case study of the People's Planning Campaign in Kerala, India. Overall, this reinterpretation leads to a different understanding of the scope of planning and planning practice, telling a story about complexity and systemic response. It allows the reinterpretation of otherwise familiar phenomena, both highlighting the empirical relevance of the theory and providing new and original insight into particular dynamics of the case study. This not only provides a greater understanding of the dynamics of complexity, but also produces advice to help planners implement structures and processes that can cope with complexity in practice.
Resumo:
Tourism is the worlds largest employer, accounting for 10% of jobs worldwide (WTO, 1999). There are over 30,000 protected areas around the world, covering about 10% of the land surface(IUCN, 2002). Protected area management is moving towards a more integrated form of management, which recognises the social and economic needs of the worlds finest areas and seeks to provide long term income streams and support social cohesion through active but sustainable use of resources. Ecotourism - 'responsible travel to natural areas that conserves the environment and improves the well- being of local people' (The Ecotourism Society, 1991) - is often cited as a panacea for incorporating the principles of sustainable development in protected area management. However, few examples exist worldwide to substantiate this claim. In reality, ecotourism struggles to provide social and economic empowerment locally and fails to secure proper protection of the local and global environment. Current analysis of ecotourism provides a useful checklist of interconnected principles for more successful initiatives, but no overall framework of analysis or theory. This paper argues that applying common property theory to the application of ecotourism can help to establish more rigorous, multi-layered analysis that identifies the institutional demands of community based ecotourism (CBE). The paper draws on existing literature on ecotourism and several new case studies from developed and developing countries around the world. It focuses on the governance of CBE initiatives, particularly the interaction between local stakeholders and government and the role that third party non-governmental organisations can play in brokering appropriate institutional arrangements. The paper concludes by offering future research directions."
Resumo:
Literacy as a social practice is integrally linked with social, economic and political institutions and processes. As such, it has a material base which is fundamentally constituted in power relations. Literacy is therefore interwoven with the text and context of everyday living in which multi-levelled meanings are organically produced at both individual and societal level. This paper argues that if language thus mediates social reality, then it follows that literacy defined as a social practice cannot really be addressed as a reified, neutral activity but that it should take account of the social, cultural and political processes in which literacy practices are embedded. Drawing on the work of key writers within the field, the paper foregrounds the primary role of the state in defining the forms and levels of literacy required and made available at particular moments within society. In a case-study of the social construction of literacy meanings in pre-revolutionary Iran, it explores the view that the discourse about societal literacy levels has historically constituted a key terrain in which the struggle for control over meaning has taken place. This struggle, it is argued, sets the interests of the state to maintain ideological and political control over the production of knowledge within the culture and society over and against the needs identified by the individual for personal development, empowerment and liberation. In an overall sense, the paper examines existing theoretical perspectives on societal literacy programmes in terms of the scope that they provide for analyses that encompass the multi-levelled power relations that shape and influence dominant discourses on the relative value of literacy for both the individual and society
Resumo:
A comparison is made of the development of global orientation during shearing of lyotropic solutions of hydroxypropylcellulose with that observed for the thermotropic phase of hydroxypropylcellulose. At shear rates the behaviour of the two systems is similar, both during steady-state shear, and in terms of relaxation following cessation of shear flow. At low shear rates, the levels of orientation observed for the thermotropic system are substantially greater than observed for the lyotropic solutions. The relationship of these differences to variations in molecular parameters, viscous stress and to director tumbling is discussed.
Resumo:
A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.
Resumo:
The development of global orientation and morphological features in linear polyethylene crystallizing from a sheared melt are studied using in-situ time-resolving wide angle X-ray scattering (WAXS) and ex-situ transmission electron microscopy. It is found that samples subjected to a shear rate above a critical value of ~1s-1 result in macroscopically oriented structures in the crystallized sample. This critical shear rate appears to be independent of the differences in molecular weight distribution of the samples studied although the morphologies which develop are sensitive to quite small differences in molecular weight distributions. The presence of shish kebabs in the morphology is shown to differ markedly according to variations in the upper molecular weight fraction of the molecular weight distribution, even though the resulting global orientation does not. The WAXS also reveals that areas which evidence no row nucleated structures still realize high degrees of molecular orientation. It is proposed that the formation of shish kebab or lamellar morphologies in these samples is dependent on the critical density of contiguous elongated crystallization nuclei rather than any specific global criteria.
Resumo:
This report describes the analysis and development of novel tools for the global optimisation of relevant mission design problems. A taxonomy was created for mission design problems, and an empirical analysis of their optimisational complexity performed - it was demonstrated that the use of global optimisation was necessary on most classes and informed the selection of appropriate global algorithms. The selected algorithms were then applied to the di®erent problem classes: Di®erential Evolution was found to be the most e±cient. Considering the speci¯c problem of multiple gravity assist trajectory design, a search space pruning algorithm was developed that displays both polynomial time and space complexity. Empirically, this was shown to typically achieve search space reductions of greater than six orders of magnitude, thus reducing signi¯cantly the complexity of the subsequent optimisation. The algorithm was fully implemented in a software package that allows simple visualisation of high-dimensional search spaces, and e®ective optimisation over the reduced search bounds.
Resumo:
This text contains papers presented at the Institute of Mathematics and its Applications Conference on Control Theory, held at the University of Strathclyde in Glasgow. The contributions cover a wide range of topics of current interest to theoreticians and practitioners including algebraic systems theory, nonlinear control systems, adaptive control, robustness issues, infinite dimensional systems, applications studies and connections to mathematical aspects of information theory and data-fusion.
Resumo:
Instrumental observations1, 2 and reconstructions3, 4 of global and hemispheric temperature evolution reveal a pronounced warming during the past 150 years. One expression of this warming is the observed increase in the occurrence of heatwaves5, 6. Conceptually this increase is understood as a shift of the statistical distribution towards warmer temperatures, while changes in the width of the distribution are often considered small7. Here we show that this framework fails to explain the record-breaking central European summer temperatures in 2003, although it is consistent with observations from previous years. We find that an event like that of summer 2003 is statistically extremely unlikely, even when the observed warming is taken into account. We propose that a regime with an increased variability of temperatures (in addition to increases in mean temperature) may be able to account for summer 2003. To test this proposal, we simulate possible future European climate with a regional climate model in a scenario with increased atmospheric greenhouse-gas concentrations, and find that temperature variability increases by up to 100%, with maximum changes in central and eastern Europe.
Resumo:
An analysis of the climate of precipitation extremes as simulated by six European regional climate models (RCMs) is undertaken in order to describe/quantify future changes and to examine/interpret differences between models. Each model has adopted boundary conditions from the same ensemble of global climate model integrations for present (1961–1990) and future (2071–2100) climate under the Intergovernmental Panel on Climate Change A2 emission scenario. The main diagnostics are multiyear return values of daily precipitation totals estimated from extreme value analysis. An evaluation of the RCMs against observations in the Alpine region shows that model biases for extremes are comparable to or even smaller than those for wet day intensity and mean precipitation. In winter, precipitation extremes tend to increase north of about 45°N, while there is an insignificant change or a decrease to the south. In northern Europe the 20-year return value of future climate corresponds to the 40- to 100-year return value of present climate. There is a good agreement between the RCMs, and the simulated change is similar to a scaling of present-day extremes by the change in average events. In contrast, there are large model differences in summer when RCM formulation contributes significantly to scenario uncertainty. The model differences are well explained by differences in the precipitation frequency and intensity process, but in all models, extremes increase more or decrease less than would be expected from the scaling of present-day extremes. There is evidence for a component of the change that affects extremes specifically and is consistent between models despite the large variation in the total response.
Resumo:
In the last decade, a vast number of land surface schemes has been designed for use in global climate models, atmospheric weather prediction, mesoscale numerical models, ecological models, and models of global changes. Since land surface schemes are designed for different purposes they have various levels of complexity in the treatment of bare soil processes, vegetation, and soil water movement. This paper is a contribution to a little group of papers dealing with intercomparison of differently designed and oriented land surface schemes. For that purpose we have chosen three schemes for classification: i) global climate models, BATS (Dickinson et al., 1986; Dickinson et al., 1992); ii) mesoscale and ecological models, LEAF (Lee, 1992) and iii) mesoscale models, LAPS (Mihailović, 1996; Mihailović and Kallos, 1997; Mihailović et al., 1999) according to the Shao et al. (1995) classification. These schemes were compared using surface fluxes and leaf temperature outputs obtained by time integrations of data sets derived from the micrometeorological measurements above a maize field at an experimental site in De Sinderhoeve (The Netherlands) for 18 August, 8 September, and 4 October 1988. Finally, comparison of the schemes was supported applying a simple statistical analysis on the surface flux outputs.
Resumo:
A systematic evaluation of agricultural factors affecting the adaptation of the tropical oil plant Jatropha curcas L. to the semi-arid subtropical climate in Northeastern Mexico has been conducted. The factors studied include plant density and topology, as well as fungi and virus abundances. A multiple regression analysis shows that total fruit production can be well predicted by the area per plant and the total presence of fungi. Four common herbicides and a mechanical weed control measure were established at a dedicated test array and their impact on plant productivity was assessed.