224 resultados para Teaching of chemistry


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bonding, photochemical and electrochemical properties of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] (alpha-diimine=2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2) and 2,2'-bipyrimidine (3)) are strongly influenced by the presence of bridging carbonyl ligands. Irradiation at 471 nm initially results in the population of a sigma(Ru-3)pi*(alpha-diimine) excited state. From this state, fast decay takes place to the optically hardly directly accessible pi(Ru/mu-CO) pi*(alpha-diimine) lowest excited state. These assignments agree with theoretical (TD-DFT) results, resonance Raman and picosecond time-resolved infrared spectra. The involvement of the bridging carbonyl ligands in the electron transfer increases the energetic barrier for the formation of open-structure photoproducts such as biradicals and zwitterions. Zwitterions were therefore only obtained in strongly coordinating media such as pyridine at 250 K. The bridging carbonyl ligands also stabilize the radical anions produced upon one-electron reduction of the clusters [Ru-3(CO)(8)(mu-CO)(2)(alpha-diimine)] and observed with cyclic voltammetry, EPR and IR spectroelectrochemistry (for alpha-diimine=2,2'-bipyrimidine). In contrast, open-triangle intermediates formed along the reduction path to [Ru(CO)(2)(alpha-diimine)](n) and [Ru-2(CO)(8)](2-) are more reactive than their triosmium analogues.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rate constants for bimolecular reactions, obtained through time-resolved kinetic studies both in the gas and liquid phases are reviewed. Data for reactions of MeSiH, PhSiH, ClSiH, SiCl2, SiMe2, MeSiPh, SiPh2 and SiMes(2) are covered. Where possible, substituent effects relative to SiH2 have been obtained. These demonstrate widely varying effects between different types of reaction, which aids mechanistic understanding. Reactivities are high for all silylenes, but substituents can reduce them by both electronic and steric effects. The gas and liquid phase data (mainly for SiMe2) are compared and appear to be reasonably consistent. This review, although detailed, is not comprehensive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time-resolved studies of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reaction with C2D2. The reaction was studied in the gas phase, mainly at a total pressure of 1.3 kPa (in SF6 bath gas) at five temperatures in the range 298-558 K. Pressure variation measurements over the range 0.13-13 kPa ( SF6) at 298, 397 and 558 K revealed a small pressure dependence but only at 558 K. After correction for this, the second-order rate coefficients gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.96 +/- 0.05) + ( 6.16 +/- 0.37 kJ mol(-1))/RT ln 10 Comparison with the reaction of GeH2 + C2H2 (studied earlier) showed a similar behaviour with almost identical rate coefficients. The lack of a significant isotope effect is consistent with a rate-determining addition process and is explained by irreversible decomposition of the reaction intermediate to give Ge(P-3) + C2H4. This result contrasts with that for GeH2 + C2H4/C2D4 and those for the analogous silylene reactions. The underlying reasons for this are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Cambridge Tropospheric Trajectory model of Chemistry and Transport (CiTTyCAT), a Lagrangian chemistry model, has been evaluated using atmospheric chemical measurements collected during the East Atlantic Summer Experiment 1996 (EASE '96). This field campaign was part of the UK Natural Environment Research Council's (NERC) Atmospheric Chemistry Studies in the Oceanic Environment (ACSOE) programme, conducted at Mace Head, Republic of Ireland, during July and August 1996. The model includes a description of gas-phase tropospheric chemistry, and simple parameterisations for surface deposition, mixing from the free troposphere and emissions. The model generally compares well with the measurements and is used to study the production and loss of O3 under a variety of conditions. The mean difference between the hourly O3 concentrations calculated by the model and those measured is 0.6 ppbv with a standard deviation of 8.7 ppbv. Three specific air-flow regimes were identified during the campaign – westerly, anticyclonic (easterly) and south westerly. The westerly flow is typical of background conditions for Mace Head. However, on some occasions there was evidence of long-range transport of pollutants from North America. In periods of anticyclonic flow, air parcels had collected emissions of NOx and VOCs immediately before arriving at Mace Head, leading to O3 production. The level of calculated O3 depends critically on the precise details of the trajectory, and hence on the emissions into the air parcel. In several periods of south westerly flow, low concentrations of O3 were measured which were consistent with deposition and photochemical destruction inside the tropical marine boundary layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

SCIENTIFIC SUMMARY Globally averaged total column ozone has declined over recent decades due to the release of ozone-depleting substances (ODSs) into the atmosphere. Now, as a result of the Montreal Protocol, ozone is expected to recover from the effects of ODSs as ODS abundances decline in the coming decades. However, a number of factors in addition to ODSs have led to and will continue to lead to changes in ozone. Discriminating between the causes of past and projected ozone changes is necessary, not only to identify the progress in ozone recovery from ODSs, but also to evaluate the effectiveness of climate and ozone protection policy options. Factors Affecting Future Ozone and Surface Ultraviolet Radiation • At least for the next few decades, the decline of ODSs is expected to be the major factor affecting the anticipated increase in global total column ozone. However, several factors other than ODS will affect the future evolution of ozone in the stratosphere. These include changes in (i) stratospheric circulation and temperature due to changes in long-lived greenhouse gas (GHG) abundances, (ii) stratospheric aerosol loading, and (iii) source gases of highly reactive stratospheric hydrogen and nitrogen compounds. Factors that amplify the effects of ODSs on ozone (e.g., stratospheric aerosols) will likely decline in importance as ODSs are gradually eliminated from the atmosphere. • Increases in GHG emissions can both positively and negatively affect ozone. Carbon dioxide (CO2)-induced stratospheric cooling elevates middle and upper stratospheric ozone and decreases the time taken for ozone to return to 1980 levels, while projected GHG-induced increases in tropical upwelling decrease ozone in the tropical lower stratosphere and increase ozone in the extratropics. Increases in nitrous oxide (N2O) and methane (CH4) concentrations also directly impact ozone chemistry but the effects are different in different regions. • The Brewer-Dobson circulation (BDC) is projected to strengthen over the 21st century and thereby affect ozone amounts. Climate models consistently predict an acceleration of the BDC or, more specifically, of the upwelling mass flux in the tropical lower stratosphere of around 2% per decade as a consequence of GHG abundance increases. A stronger BDC would decrease the abundance of tropical lower stratospheric ozone, increase poleward transport of ozone, and could reduce the atmospheric lifetimes of long-lived ODSs and other trace gases. While simulations showing faster ascent in the tropical lower stratosphere to date are a robust feature of chemistry-climate models (CCMs), this has not been confirmed by observations and the responsible mechanisms remain unclear. • Substantial ozone losses could occur if stratospheric aerosol loading were to increase in the next few decades, while halogen levels are high. Stratospheric aerosol increases may be caused by sulfur contained in volcanic plumes entering the stratosphere or from human activities. The latter might include attempts to geoengineer the climate system by enhancing the stratospheric aerosol layer. The ozone losses mostly result from enhanced heterogeneous chemistry on stratospheric aerosols. Enhanced aerosol heating within the stratosphere also leads to changes in temperature and circulation that affect ozone. • Surface ultraviolet (UV) levels will not be affected solely by ozone changes but also by the effects of climate change and by air quality change in the troposphere. These tropospheric effects include changes in clouds, tropospheric aerosols, surface reflectivity, and tropospheric sulfur dioxide (SO2) and nitrogen dioxide (NO2). The uncertainties in projections of these factors are large. Projected increases in tropospheric ozone are more certain and may lead to reductions in surface erythemal (“sunburning”) irradiance of up to 10% by 2100. Changes in clouds may lead to decreases or increases in surface erythemal irradiance of up to 15% depending on latitude. Expected Future Changes in Ozone Full ozone recovery from the effects of ODSs and return of ozone to historical levels are not synonymous. In this chapter a key target date is chosen to be 1980, in part to retain the connection to previous Ozone Assessments. Noting, however, that decreases in ozone may have occurred in some regions of the atmosphere prior to 1980, 1960 return dates are also reported. The projections reported on in this chapter are taken from a recent compilation of CCM simulations. The ozone projections, which also form the basis for the UV projections, are limited in their representativeness of possible futures since they mostly come from CCM simulations based on a single GHG emissions scenario (scenario A1B of Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2000) and a single ODS emissions scenario (adjusted A1 of the previous (2006) Ozone Assessment). Throughout this century, the vertical, latitudinal, and seasonal structure of the ozone distribution will be different from what it was in 1980. For this reason, ozone changes in different regions of the atmosphere are considered separately. • The projections of changes in ozone and surface clear-sky UV are broadly consistent with those reported on in the 2006 Assessment. • The capability of making projections and attribution of future ozone changes has been improved since the 2006 Assessment. Use of CCM simulations from an increased number of models extending through the entire period of ozone depletion and recovery from ODSs (1960–2100) as well as sensitivity simulations have allowed more robust projections of long-term changes in the stratosphere and of the relative contributions of ODSs and GHGs to those changes. • Global annually averaged total column ozone is projected to return to 1980 levels before the middle of the century and earlier than when stratospheric halogen loading returns to 1980 levels. CCM projections suggest that this early return is primarily a result of GHG-induced cooling of the upper stratosphere because the effects of circulation changes on tropical and extratropical ozone largely cancel. Global (90°S–90°N) annually averaged total column ozone will likely return to 1980 levels between 2025 and 2040, well before the return of stratospheric halogens to 1980 levels between 2045 and 2060. • Simulated changes in tropical total column ozone from 1960 to 2100 are generally small. The evolution of tropical total column ozone in models depends on the balance between upper stratospheric increases and lower stratospheric decreases. The upper stratospheric increases result from declining ODSs and a slowing of ozone destruction resulting from GHG-induced cooling. Ozone decreases in the lower stratosphere mainly result from an increase in tropical upwelling. From 1960 until around 2000, a general decline is simulated, followed by a gradual increase to values typical of 1980 by midcentury. Thereafter, although total column ozone amounts decline slightly again toward the end of the century, by 2080 they are no longer expected to be affected by ODSs. Confidence in tropical ozone projections is compromised by the fact that simulated decreases in column ozone to date are not supported by observations, suggesting that significant uncertainties remain. • Midlatitude total column ozone is simulated to evolve differently in the two hemispheres. Over northern midlatitudes, annually averaged total column ozone is projected to return to 1980 values between 2015 and 2030, while for southern midlatitudes the return to 1980 values is projected to occur between 2030 and 2040. The more rapid return to 1980 values in northern midlatitudes is linked to a more pronounced strengthening of the poleward transport of ozone due to the effects of increased GHG levels, and effects of Antarctic ozone depletion on southern midlatitudes. By 2100, midlatitude total column ozone is projected to be above 1980 values in both hemispheres. • October-mean Antarctic total column ozone is projected to return to 1980 levels after midcentury, later than in any other region, and yet earlier than when stratospheric halogen loading is projected to return to 1980 levels. The slightly earlier return of ozone to 1980 levels (2045–2060) results primarily from upper stratospheric cooling and resultant increases in ozone. The return of polar halogen loading to 1980 levels (2050–2070) in CCMs is earlier than in empirical models that exclude the effects of GHG-induced changes in circulation. Our confidence in the drivers of changes in Antarctic ozone is higher than for other regions because (i) ODSs exert a strong influence on Antarctic ozone, (ii) the effects of changes in GHG abundances are comparatively small, and (iii) projections of ODS emissions are more certain than those for GHGs. Small Antarctic ozone holes (areas of ozone <220 Dobson units, DU) could persist to the end of the 21st century. • March-mean Arctic total column ozone is projected to return to 1980 levels two to three decades before polar halogen loading returns to 1980 levels, and to exceed 1980 levels thereafter. While CCM simulations project a return to 1980 levels between 2020 and 2035, most models tend not to capture observed low temperatures and thus underestimate present-day Arctic ozone loss such that it is possible that this return date is biased early. Since the strengthening of the Brewer-Dobson circulation through the 21st century leads to increases in springtime Arctic column ozone, by 2100 Arctic ozone is projected to lie well above 1960 levels. Uncertainties in Projections • Conclusions dependent on future GHG levels are less certain than those dependent on future ODS levels since ODS emissions are controlled by the Montreal Protocol. For the six GHG scenarios considered by a few CCMs, the simulated differences in stratospheric column ozone over the second half of the 21st century are largest in the northern midlatitudes and the Arctic, with maximum differences of 20–40 DU between the six scenarios in 2100. • There remain sources of uncertainty in the CCM simulations. These include the use of prescribed ODS mixing ratios instead of emission fluxes as lower boundary conditions, the range of sea surface temperatures and sea ice concentrations, missing tropospheric chemistry, model parameterizations, and model climate sensitivity. • Geoengineering schemes for mitigating climate change by continuous injections of sulfur-containing compounds into the stratosphere, if implemented, would substantially affect stratospheric ozone, particularly in polar regions. Ozone losses observed following large volcanic eruptions support this prediction. However, sporadic volcanic eruptions provide limited analogs to the effects of continuous sulfur emissions. Preliminary model simulations reveal large uncertainties in assessing the effects of continuous sulfur injections. Expected Future Changes in Surface UV. While a number of factors, in addition to ozone, affect surface UV irradiance, the focus in this chapter is on the effects of changes in stratospheric ozone on surface UV. For this reason, clear-sky surface UV irradiance is calculated from ozone projections from CCMs. • Projected increases in midlatitude ozone abundances during the 21st century, in the absence of changes in other factors, in particular clouds, tropospheric aerosols, and air pollutants, will result in decreases in surface UV irradiance. Clear-sky erythemal irradiance is projected to return to 1980 levels on average in 2025 for the northern midlatitudes, and in 2035 for the southern midlatitudes, and to fall well below 1980 values by the second half of the century. However, actual changes in surface UV will be affected by a number of factors other than ozone. • In the absence of changes in other factors, changes in tropical surface UV will be small because changes in tropical total column ozone are projected to be small. By the middle of the 21st century, the model projections suggest surface UV to be slightly higher than in the 1960s, very close to values in 1980, and slightly lower than in 2000. The projected decrease in tropical total column ozone through the latter half of the century will likely result in clear-sky surface UV remaining above 1960 levels. Average UV irradiance is already high in the tropics due to naturally occurring low total ozone columns and high solar elevations. • The magnitude of UV changes in the polar regions is larger than elsewhere because ozone changes in polar regions are larger. For the next decades, surface clear-sky UV irradiance, particularly in the Antarctic, will continue to be higher than in 1980. Future increases in ozone and decreases in clear-sky UV will occur at slower rates than those associated with the ozone decreases and UV increases that occurred before 2000. In Antarctica, surface clear-sky UV is projected to return to 1980 levels between 2040 and 2060, while in the Arctic this is projected to occur between 2020 and 2030. By 2100, October surface clear-sky erythemal irradiance in Antarctica is likely to be between 5% below to 25% above 1960 levels, with considerable uncertainty. This is consistent with multi-model-mean October Antarctic total column ozone not returning to 1960 levels by 2100. In contrast, by 2100, surface clear-sky UV in the Arctic is projected to be 0–10% below 1960 levels.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time-resolved kinetic studies of the reaction of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate constants for its bimolecular reaction with 2-butyne, CH3C CCH3. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 300-556 K. The second order rate constants obtained by extrapolation to the high pressure limits at each temperature, fitted the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.46 +/- 10.06) + (5.16 +/- 10.47) kJ mol(-1)/ RT ln 10 Calculations of the energy surface of the GeC4H8 reaction system were carried out employing the additivity principle, by combining previous quantum chemical calculations of related reaction systems. These support formation of 1,2-dimethylvinylgermylene (rather than 2,3-dimethylgermirene) as the end product. RRKM calculations of the pressure dependence of the reaction are in reasonable agreement with this finding. The reactions of GeH2 with C2H2 and with CH3CRCCH3 are compared and contrasted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The hexaazamacrocycles [28](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminoethyleneiminoethylene]} and [32](DBF)2N6 {cyclo[bis(4,6-dimethyldibenzo[b,d]furaniminopropyleneiminopropylene]} form stable dinuclear copper(II) complexes suitable to behave as receptors for several anionic substrates. These two receptors were used to study the binding interactions with several substrates, such as imidazole (Him) and some carboxylates [benzoate (bz−), oxalate (ox2−), malonate (mal2−), phthalate (ph2−), isophthalate (iph2−), and terephthalate (tph2−)] by spectrophotometric titrations and EPR spectroscopy in MeOH (or H2O):DMSO (1:1 v/v) solution. The largest association constant was found for ox2− with Cu2[32](DBF)2N64+, whereas for the aromatic dicarboxylate anions the binding constants follow the trend ph2− > iph2− > tph2−, i.e. decrease with the increase of the distance of the two binding sites of the substrate. On the other hand, the large blue shift of 68 nm observed by addition of Him to Cu2[32](DBF)2N64+ points out for the formation of the bridged CuimCu cascade complex, indicating this receptor as a potential sensor for the detection and determination of imidazole in solution. The X-band EPR spectra of the Cu2[28](DBF)2N64+ and Cu2[32](DBF)2N6]4+ complexes and the cascade complexes with the substrates, performed in H2O:DMSO (1:1 v/v) at 5 to 15 K, showed that the CuCu distance is slightly larger than the one found in crystal state and that this distance increases when the substrate is accommodated between the two copper centres. The crystal structure of [Cu2[28](DBF)2N6(ph)2]·CH3OH was determined by X-ray diffraction and revealed the two copper centres bridged by two ph2− anions at a Cu···Cu distance of 5.419(1) Å. Each copper centre is surrounded by three carboxylate oxygen atoms from two phthalate anions and three contiguous nitrogen atoms of the macrocycle in a pseudo octahedral coordination environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ligand 2,2'-[(E)-diazene-1,2-diyldicarbonothioyl]diphenol has been synthesised in situ by aerial oxidation of o-hydroxythiobenzhydrazide [H(htbh)] in presence of rhodium(III) in DMSO. Each ligand binds two RhO2+ ions through its N and S atoms and the O atom of its deprotonated hydroxy group. Each RhO2+ contains two cis-Rh = O bonds. The sixth coordination site of each rhodium(v) is occupied by the O of DMSO.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nuclear mnagnetic resonance (NMR) spectroscopy involves the excitation of nuclei by electromagnetic radiation in the radio-frequency range of the electromagnetic spectrum. For a nucleus to absorb energy from radiowaves in this way, it must hve the quantum mechanical property of spin. A spinning nucleus, such as that of the hydrogen atom, will dopt one f only two possible states when placed in a magnetic field. (In NMR, the hydrogen nucleus is often referred to as a proton, and is given the abbreviation 1H.) Az the strength of the magnetic field is increased, there is a proportional increase in the energy 'gap' between these two states. We can predic the resonant frequency at which any spinning nucleus will absorb energy from radio-frequency radiation as it jumps from the lower energy state to the upper state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Soon after its discovery in the 1950s, NMR had become an indispensable tool fr chemists. In the 1970s and 1980s, the power of the technique was extended from one dimension to two and even three dimensions, opening up exciting applkications in both chemistry and biochemistry. the success of one dimensional. high-resolution NMR stems from the unique insights that it can provide about molecular structure. The chemical shift of a nucleus gives invaluable information abut the chemical environment in which that nucleus is located, Coupling interactions between hydorgen nuclei, as revealed by characteristic splitting patterns inthe 1H-NMR spectrum, provide informaton about the loaction of one group of hydorgen atoms relative to others inthe molecule. And the nuclearf Overhauser effect (nOe) can shed light on molecular stereochemistry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly of tripeptides based on the RGD cell adhesion motif is investigated. Two tripeptides containing the Fmoc [N-(fluorenyl)-9-methoxycarbonyl] aromatic unit were synthesized, Fmoc-RGD and a control peptide containing a scrambled sequence, Fmoc-GRD. The Fmoc is used to control selfassembly via aromatic stacking interactions. The self-assembly and hydrogelation properties of the two Fmoc-tripeptides are compared. Both form well defined amyloid fibrils (as shown by cryo-TEM and SAXS) with b-sheet features in their circular dichroism and FTIR spectra. Both peptides form selfsupporting hydrogels, the dynamic shear modulus of which was measured. Preliminary cell culture experiments reveal that Fmoc-RGD can be used as a support for bovine fibroblasts, but not Fmoc- GRD, consistent with the incorporation of the cell adhesion motif in the former peptide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In situ analysis has become increasingly important for contaminated land investigation and remediation. At present, portable techniques are used mainly as scanning tools to assess the spread and magnitude of the contamination, and are an adjunct to conventional laboratory analyses. A site in Cornwall, containing naturally occurring radioactive material (NORM), provided an opportunity for Reading University PhD student Anna Kutner to compare analytical data collected in situ with data generated by laboratory-based methods. The preliminary results in this paper extend the author‟s poster presentation at last September‟s GeoSpec2010 conference held in Lancaster.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The self-assembly of amphiphilic peptides is reviewed. The review covers surfactant-like peptides with amphiphilicity arising from the sequence of natural amino acids, and also peptide amphiphiles (PAs) in which lipid chains are attached to hydrophilic peptide sequences containing charged residues. The influence of the secondary structure on the self-assembled structure and vice versa is discussed. For surfactant-like peptides structures including fibrils, nanotubes, micelles and vesicles have been reported. A particularly common motif for PAs is beta-sheet based fibrils, although other structures have been observed. In these structures, the peptide epitope is presented at the surface of the nanostructure, providing remarkable bioactivity. Recent discoveries of potential, and actual, applications of these materials in biomedicine and bionanotechnology are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pluronic F127 diacrylate (F127DA) is a bifunctional acrylate and as such it should in principle produce macroscopically cross-linked materials; however, its photopolymerization in water does not lead to 3D-extended hydrogels. The main species present after photopolymerization appear to be cross-linked micelles, which indicates that the micellar morphology of F127DA has a template effect on the polymerization. The structural analogy causes the physical state of precursor and polymerized materials to be very similar for a wide range of concentrations (5–25% wt) and temperatures (10–37 °C). Also the long-range morphology of F127DA appears to have a template effect: samples photopolymerized in a micellar gel state and redispersed at high concentration (25% wt) show a long-range organization that depended on the concentration and therefore on the order of the precursor.