109 resultados para Smart electronic meter
Resumo:
Electronic word-of-mouth (eWOM) is recognised as a means of interpersonal communication and a powerful marketing tool. However, previous studies have focussed on related motivations, and limited attention has been given to understanding the antecedents of eWOM communication behaviour in the travel industry. This study proposes a full and partial mediation model, which brings together for the first time three key antecedents: adoption of electronic communication technology, consumer dis/satisfaction with travel consumption experience, and subjective norm. The model aims to understand the impact of these antecedents on travellers' attitude towards eWOM communication and intention to use eWOM communication media. The data were collected from international travellers (n = 524), and structural equation modelling is used to test the conceptual framework. The findings of the study suggest that overall attitude towards eWOM communication partially mediates the impact of the traveller's adoption of electronic communication technology and subjective norm, and fully mediates the impact of consumer dis/satisfaction with travel consumption experience on travellers' intention to use eWOM communication media.
Resumo:
Existing urban meteorological networks have an important role to play as test beds for inexpensive and more sustainable measurement techniques that are now becoming possible in our increasingly smart cities. The Birmingham Urban Climate Laboratory (BUCL) is a near-real-time, high-resolution urban meteorological network (UMN) of automatic weather stations and inexpensive, nonstandard air temperature sensors. The network has recently been implemented with an initial focus on monitoring urban heat, infrastructure, and health applications. A number of UMNs exist worldwide; however, BUCL is novel in its density, the low-cost nature of the sensors, and the use of proprietary Wi-Fi networks. This paper provides an overview of the logistical aspects of implementing a UMN test bed at such a density, including selecting appropriate urban sites; testing and calibrating low-cost, nonstandard equipment; implementing strict quality-assurance/quality-control mechanisms (including metadata); and utilizing preexisting Wi-Fi networks to transmit data. Also included are visualizations of data collected by the network, including data from the July 2013 U.K. heatwave as well as highlighting potential applications. The paper is an open invitation to use the facility as a test bed for evaluating models and/or other nonstandard observation techniques such as those generated via crowdsourcing techniques.
Resumo:
Smart grid research has tended to be compartmentalised, with notable contributions from economics, electrical engineering and science and technology studies. However, there is an acknowledged and growing need for an integrated systems approach to the evaluation of smart grid initiatives. The capacity to simulate and explore smart grid possibilities on various scales is key to such an integrated approach but existing models – even if multidisciplinary – tend to have a limited focus. This paper describes an innovative and flexible framework that has been developed to facilitate the simulation of various smart grid scenarios and the interconnected social, technical and economic networks from a complex systems perspective. The architecture is described and related to realised examples of its use, both to model the electricity system as it is today and to model futures that have been envisioned in the literature. Potential future applications of the framework are explored, along with its utility as an analytic and decision support tool for smart grid stakeholders.