115 resultados para Rayleigh-Benard Flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion flows from the ionosphere into the magnetosphere fall into two main categories: cold (<1eV), “classical” polar wind and heated (>1eV), suprathermal ion outflows. A wealth of new understanding of these outflows has resulted from the Dynamics Explorer Mission. This review describes both the confirmation of the predicted classical polar wind as well as the revelation of a great variety of low-energy suprathermal outflows: the cleft ion fountain, the nightside auroral fountaion (X-events, toroids and field-aligned flows) and polar cap outflows. The main emphasis is placed on flows at energies below about 50eV, observed by the Retarding Ion Mass Spectrometer (RIMS) on board the Dynamics Explorer 1 satellite; limited comparisons are made with results from other instruments which sample different energy ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NASA's Dynamics Explorer (DE) mission was designed to study the coupling between the Earth's magnetosphere, ionosphere and neutral thermosphere1. One area of major interest is the outflow of ionospheric plasma into the magnetosphere, the scale and significance of which is only now becoming apparent with the advent of mass-resolving, low-energy ion detectors. Here we compare observations of ion flows in the polar magnetosphere, made by the retarding ion mass spectrometer (RIMS)2 on DE1, with those made simultaneously in the topside ionosphere by the ion drift meter (IDM)3 on the lower-altitude DE2 spacecraft. The results show the dayside auroral ionosphere to be a significant and highly persistent source of plasma for the magnetosphere. The upwelling ionospheric ions are spatially dispersed, according to both their energy and mass, by the combined actions of the geomagnetic field and the dawn-to-dusk convection electric field, in an effect analogous to the operation of an ion mass spectrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a prolonged period of strongly northward Interplanetary Magnetic Field (IMF) on the high-latitude F-region is studied using data from the EISCAT Common Programme Zero mode of operation on 11–12 August 1982. The analysis of the raw autocorrelation functions is kept to the directly derived parameters Ne, Te, Ti and velocity, and limits are defined for the errors introduced by assumptions about ion composition and by changes in the transmitted power and system constant. Simple data-cleaning criteria are employed to eliminate problems due to coherent signals and large background noise levels. The observed variations in plasma densities, temperatures and velocities are interpreted in terms of supporting data from ISEE-3 and local riometers and magnetometers. Both field-aligned and field-perpendicular plasma flows at Tromsø showed effects of the northward IMF: convection was slow and irregular and field-aligned flow profiles were characteristic of steady-state polar wind outflow with flux of order 1012 m−2 s−1. This period followed a strongly southward IMF which had triggered a substorm. The substorm gave enhanced convection, with a swing to equatorward flow and large (5 × 1012 m−2 s−1), steady-state field-aligned fluxes, leading to the possibility of O+ escape into the magnetosphere. The apparent influence of the IMF over both field-perpendicular and field-aligned flows is explained in terms of the cross-cap potential difference and the location of the auroral oval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topside ionospheric profiles are used to study the upward field-aligned flow of thermal O+ at high latitudes. On the majority of the field lines outside the plasmasphere, the mean flux is approximately equal to the mean polar wind measured by spacecraft at greater altitudes. This is consistent with the theory of thermal light ion escape supported, via charge exchange, by upward O+ flow at lower heights. Events of larger O+ flow are detected at auroral latitudes and their occurrence is found to agree with that of transversely accelerated ions within the topside ionosphere and the magnetosphere. The effects of low altitude heating of O+ by oxygen cyclotron waves, driven by downward field-aligned currents, are considered as a possible common cause of these two types of event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose – This paper aims to investigate the scale and drivers of cross-border real estate development in Western Europe and Central and Eastern Europe. Design/methodology/approach – Placing cross-border real estate development within the framework of foreign direct investment (FDI), conceptual complexities in characterizing the notional real estate developer are emphasized. Drawing upon a transaction database, this paper proxies cross-border real estate development flows with asset sales by developers. Findings – Much higher levels of market penetration by international real estate developers are found in the less mature markets of Central and Eastern Europe. Analysis suggests a complex range of determinants with physical distance remaining a consistent barrier to cross-border development flows. Originality/value – This analysis adds significant value in terms of understanding cross-border real estate development flows. In this study, a detailed examination of the issues based on a rigorous empirical analysis through gravity modelling is offered. The gravity framework is one of the most confirmed empirical regularities in international economics and commonly applied to trade, FDI, migration, foreign portfolio investment inter alia. This paper assesses the extent to which it provides useful insights into the pattern of cross-border real estate development flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5 dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concrete Gown for Immaterial Flows was a sculptural installation and performance commissioned by the Hayward Gallery as part of the Mirrorcity exhibition (14 October 2014 - 4 January 2015). In an age of increasingly abstract power, ideology is disavowed as a twentieth century relic. We are instead told we are governed by pragmatic decisions based on charts and figures. Responding to this notion, Concrete Gown for Immaterial Flows is comprised of a concrete materialisation of abstract financial charts. It forms a stage upon which a series of live music performances take place. Musicians were commissioned to produce new interpretations of Nathan Alterman's "Morning Song", an old Zionist love song to the state, promising to clothe it in concrete and cement. Thus, the immateriality of financial transactions is made physical and given the monumental language it lacks in a patriotic offering for our times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A signature of submesoscale flows in the upper ocean is skewness in the distribution of relative vorticity. Expected to result for high Rossby-number flows, such skewness has implications for mixing, dissipation and stratification within the upper ocean. An array of moorings deployed in the Northeast Atlantic for one year as part of the OSMOSIS experiment reveals that relative vorticity is positively skewed during winter even though the scale of the Rossby number is less than 0.5. Furthermore, this skewness is reduced to zero during spring and autumn. There is also evidence of modest seasonal variations in the gradient Rossby number. The proposed mechanism by which relative vorticity is skewed is that the ratio of lateral to vertical buoyancy gradients, as summarized by the inverse gradient Richardson number, restricts its range during winter but less so at other times of the year. These results support recent observations and model simulations suggesting the upper ocean is host to a seasonal cycle in submesoscale turbulence.