235 resultados para Practical algorithm
Resumo:
This paper discusses the requirements on the numerical precision for a practical Multiband Ultra-Wideband (UWB) consumer electronic solution. To this end we first present the possibilities that UWB has to offer to the consumer electronics market and the possible range of devices. We then show the performance of a model of the UWB baseband system implemented using floating point precision. Then, by simulation we find the minimal numerical precision required to maintain floating-point performance for each of the specific data types and signals present in the UWB baseband. Finally, we present a full description of the numerical requirements for both the transmit and receive components of the UWB baseband. The numerical precision results obtained in this paper can then be used by baseband designers to implement cost effective UWB systems using System-on-Chip (SoC), FPGA and ASIC technology solutions biased toward the competitive consumer electronics market(1).
Resumo:
In this paper results are shown to indicate the efficacy of a direct connection between the human nervous system and a computer network. Experimental results obtained thus far from a study lasting for over 3 months are presented, with particular emphasis placed on the direct interaction between the human nervous system and a piece of wearable technology. An overview of the present state of neural implants is given, as well as a range of application areas considered thus far. A view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.
Resumo:
A novel Linear Hashtable Method Predicted Hexagonal Search (LHMPHS) method for block based motion compensation is proposed. Fast block matching algorithms use the origin as the initial search center, which often does not track motion very well. To improve the accuracy of the fast BMA's, we employ a predicted starting search point, which reflects the motion trend of the current block. The predicted search centre is found closer to the global minimum. Thus the center-biased BMA's can be used to find the motion vector more efficiently. The performance of the algorithm is evaluated by using standard video sequences, considers the three important metrics: The results show that the proposed algorithm enhances the accuracy of current hexagonal algorithms and is better than Full Search, Logarithmic Search etc.
Resumo:
This paper presents a novel two-pass algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for block base motion compensation. On the basis of research from previous algorithms, especially an on-the-edge motion estimation algorithm called hexagonal search (HEXBS), we propose the LHMEA and the Two-Pass Algorithm (TPA). We introduced hashtable into video compression. In this paper we employ LHMEA for the first-pass search in all the Macroblocks (MB) in the picture. Motion Vectors (MV) are then generated from the first-pass and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of MBs. The evaluation of the algorithm considers the three important metrics being time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms, Experimental results show that the proposed algorithm can offer the same compression rate as the Full Search. LHMEA with TPA has significant improvement on HEXBS and shows a direction for improving other fast motion estimation algorithms, for example Diamond Search.
Resumo:
Comparison-based diagnosis is an effective approach to system-level fault diagnosis. Under the Maeng-Malek comparison model (NM* model), Sengupta and Dahbura proposed an O(N-5) diagnosis algorithm for general diagnosable systems with N nodes. Thanks to lower diameter and better graph embedding capability as compared with a hypercube of the same size, the crossed cube has been a promising candidate for interconnection networks. In this paper, we propose a fault diagnosis algorithm tailored for crossed cube connected multicomputer systems under the MM* model. By introducing appropriate data structures, this algorithm runs in O(Nlog(2)(2) N) time, which is linear in the size of the input. As a result, this algorithm is significantly superior to the Sengupta-Dahbura's algorithm when applied to crossed cube systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fully connected cubic networks (FCCNs) are a class of newly proposed hierarchical interconnection networks for multicomputer systems, which enjoy the strengths of constant node degree and good expandability. The shortest path routing in FCCNs is an open problem. In this paper, we present an oblivious routing algorithm for n-level FCCN with N = 8(n) nodes, and prove that this algorithm creates a shortest path from the source to the destination. At the costs of both an O(N)-parallel-step off-line preprocessing phase and a list of size N stored at each node, the proposed algorithm is carried out at each related node in O(n) time. In some cases the proposed algorithm is superior to the one proposed by Chang and Wang in terms of the length of the routing path. This justifies the utility of our routing strategy. (C) 2006 Elsevier Inc. All rights reserved.
Resumo:
A novel radix-3/9 algorithm for type-III generalized discrete Hartley transform (GDHT) is proposed, which applies to length-3(P) sequences. This algorithm is especially efficient in the case that multiplication is much more time-consuming than addition. A comparison analysis shows that the proposed algorithm outperforms a known algorithm when one multiplication is more time-consuming than five additions. When combined with any known radix-2 type-III GDHT algorithm, the new algorithm also applies to length-2(q)3(P) sequences.
Resumo:
A new probabilistic neural network (PNN) learning algorithm based on forward constrained selection (PNN-FCS) is proposed. An incremental learning scheme is adopted such that at each step, new neurons, one for each class, are selected from the training samples arid the weights of the neurons are estimated so as to minimize the overall misclassification error rate. In this manner, only the most significant training samples are used as the neurons. It is shown by simulation that the resultant networks of PNN-FCS have good classification performance compared to other types of classifiers, but much smaller model sizes than conventional PNN.