109 resultados para Plant indicator species
Resumo:
Two key plant adaptations for phosphorus (P) acquisition are carboxylate exudation into the rhizosphere and mycorrhizal symbioses. These target different soil P resources, presumably with different plant carbon costs. We examined the effect of inoculation with arbuscular mycorrhizal fungi (AMF) on amount of rhizosphere carboxylates and plant P uptake for 10 species of low-P adapted Kennedia grown for 23 weeks in low-P sand. Inoculation decreased carboxylates in some species (up to 50%), decreased plant dry weight (21%) and increased plant P content (23%). There was a positive logarithmic relationship between plant P content and the amount of rhizosphere citric acid for inoculated and uninoculated plants. Causality was indicated by experiments using sand where little citric acid was lost from the soil solution over 2 h and citric acid at low concentrations desorbed P into the soil solution. Senesced leaf P concentration was often low and P-resorption efficiencies reached >90%. In conclusion, we propose that mycorrhizally mediated resource partitioning occurred because inoculation reduced rhizosphere carboxylates, but increased plant P uptake. Hence, presumably, the proportion of plant P acquired from strongly sorbed sources decreased with inoculation, while the proportion from labile inorganic P increased. Implications for plant fitness under field conditions now require investigation.
Transcriptomic analysis of Enterohaemorrhagic Escherichia coli O157:H7 in response to plant extracts
Resumo:
Enterohaemorrhagic Escherichia coli (EHEC) are a group of food and contact-borne pathogens responsible for haemorrhagic colitis. The bacteria can be transmitted by contaminated meat, but importantly, also by plants. The bacteria can use plants as an alternative host, where they associate with both the leaves and the roots. Colonisation in the rhizosphere of plants is thought to be the main habitat for colonisation. Four different plant species, commonly associated with EHEC outbreaks, were infected with EHEC O157:H7 isolates Sakai and TUV 93-0 over ten days to assess the colonisation potential of the bacteria in both the phyllosphere and rhizosphere of plants. The rhizosphere was found to sustain a higher population level of bacteria over time in comparison to the phyllosphere, yet both strains were unable to utilize root exudates for growth. Global gene expression changes of EHEC O157:H7 strain Sakai were measured in response to plant extracts such as leaf lysates, root exudates and leaf cell wall polysaccharides from spinach cultivar Amazon and lettuce cultivar Salinas. Microarrays analysis showed a significant change in expression of 17 % of genes on exposure to leaf lysates of spinach. A more specific response was seen to spinach leaf cell wall polysaccharides with only a 1.5 % change. In contrast, when exposed to lettuce leaf cell wall polysaccharides a higher change of 4.8 % was seen. Genes that were differentially expressed belonged to multiple functional groups, including metabolism, indicating the utilization of plant-specific polysaccharides. Several areas of further investigation have been determined from this project, including the importance of culturing bacterial strains at a relevant temperature, the proposed lack of the type III secretion system in plant colonization by EHEC O157:H7 and the utilization of plant components for growth and persistence in the plant environment.
Resumo:
Restoration and maintenance of habitat diversity have been suggested as conservation priorities in farmed landscapes, but how this should be achieved and at what scale are unclear. This study makes a novel comparison of the effectiveness of three wildlife-friendly farming schemes for supporting local habitat diversity and species richness on 12 farms in England. The schemes were: (i) Conservation Grade (Conservation Grade: a prescriptive, non-organic, biodiversity-focused scheme), (ii) organic agriculture and (iii) a baseline of Entry Level Stewardship (Entry Level Stewardship: a flexible widespread government scheme). Conservation Grade farms supported a quarter higher habitat diversity at the 100-m radius scale compared to Entry Level Stewardship farms. Conservation Grade and organic farms both supported a fifth higher habitat diversity at the 250-m radius scale compared to Entry Level Stewardship farms. Habitat diversity at the 100-m and 250-m scales significantly predicted species richness of butterflies and plants. Habitat diversity at the 100-m scale also significantly predicted species richness of birds in winter and solitary bees. There were no significant relationships between habitat diversity and species richness for bumblebees or birds in summer. Butterfly species richness was significantly higher on organic farms (50% higher) and marginally higher on Conservation Grade farms (20% higher), compared with farms in Entry Level Stewardship. Organic farms supported significantly more plant species than Entry Level Stewardship farms (70% higher) but Conservation Grade farms did not (10% higher). There were no significant differences between the three schemes for species richness of bumblebees, solitary bees or birds. Policy implications. The wildlife-friendly farming schemes which included compulsory changes in management, Conservation Grade and organic, were more effective at increasing local habitat diversity and species richness compared with the less prescriptive Entry Level Stewardship scheme. We recommend that wildlife-friendly farming schemes should aim to enhance and maintain high local habitat diversity, through mechanisms such as option packages, where farmers are required to deliver a combination of several habitats.
Resumo:
Changes in land management practices may have significant implications for soil microbial communities important in organic P turnover. Soil bacteria can increase plant P availability by excreting phosphatase enzymes which catalyze the hydrolysis of ester-phosphate bonds. Examining the diversity and abundance of alkaline phosphatase gene harboring bacteria may provide valuable insight into alkaline phosphatase production in soils. This study examined the effect of 20 years of no input organic (ORG), organic with composted manure (ORG + M), conventional (CONV) and restored prairie (PRA) management on soil P bioavailability, alkaline phosphatase activity (ALP), and abundance and diversity of ALP gene (phoD) harboring bacteria in soils from the northern Great Plains of Canada. Management system influenced bioavailable P (P < 0.001), but not total P, with the lowest concentrations in the ORG systems and the highest in PRA. Higher rates of ALP were observed in the ORG and ORG + M treatments with a significant negative correlation between bioavailable P and ALP in 2011 (r2 = 0.71; P = 0.03) and 2012 (r2 = 0.51; P = 0.02), suggesting that ALP activity increased under P limiting conditions. The phoD gene abundance was also highest in ORG and ORG + M resulting in a significant positive relationship between bacterial phoD abundance and ALP activity (r2 = 0.71; P = 0.009). Analysis of phoD bacterial community fingerprints showed a higher number of species in CONV compared to ORG and ORG + M, contrary to what was expected considering greater ALP activity under ORG management. In 2012, banding profiles of ORG + M showed fewer phoD bacterial species following the second manure application, although ALP activity is higher than in 2011. This indicates that a few species may be producing more ALP and that quantitative gene analysis was a better indicator of activity than the number of species present.