159 resultados para Piston-driven expansion tubes
Resumo:
A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.
Resumo:
The complexity of current and emerging high performance architectures provides users with options about how best to use the available resources, but makes predicting performance challenging. In this work a benchmark-driven performance modelling approach is outlined that is appro- priate for modern multicore architectures. The approach is demonstrated by constructing a model of a simple shallow water code on a Cray XE6 system, from application-specific benchmarks that illustrate precisely how architectural char- acteristics impact performance. The model is found to recre- ate observed scaling behaviour up to 16K cores, and used to predict optimal rank-core affinity strategies, exemplifying the type of problem such a model can be used for.
Resumo:
International strategy research has identified a variety of multinational enterprise (MNE) expansion patterns. Some MNEs appear to expand internationally at a stable rate, whereas others expand rapidly in one period and then tend to experience slower growth. The latter pattern suggests the occurrence of the Penrose effect. We identified two determinants of these diverging patterns. First, we propose that high levels of added cultural distance (reflecting expansion into new local contexts) during one period, may negatively affect further international expansion because of dynamic adjustment costs. Second, we suggest that managing a network of subsidiaries operating in a set of local contexts with high cultural diversity, increases environmental and internal governance complexity. Extant cultural diversity of the local contexts where the MNE is active in a first period may therefore discourage adding further cultural distance. We test the hypothesized relationships using a panel of 91 German companies.
Resumo:
Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.
Resumo:
Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the C≡N groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4-n(NC)n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn−N and Zn−C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ~0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn−C≡N−Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contribution at temperatures up to 295 K.
Resumo:
The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.
Resumo:
Descent and spreading of high salinity water generated by salt rejection during sea ice formation in an Antarctic coastal polynya is studied using a hydrostatic, primitive equation three-dimensional ocean model called the Proudman Oceanographic Laboratory Coastal Ocean Modeling System (POLCOMS). The shape of the polynya is assumed to be a rectangle 100 km long and 30 km wide, and the salinity flux into the polynya at its surface is constant. The model has been run at high horizontal spatial resolution (500 m), and numerical simulations reveal a buoyancy-driven coastal current. The coastal current is a robust feature and appears in a range of simulations designed to investigate the influence of a sloping bottom, variable bottom drag, variable vertical turbulent diffusivities, higher salinity flux, and an offshore position of the polynya. It is shown that bottom drag is the main factor determining the current width. This coastal current has not been produced with other numerical models of polynyas, which may be because these models were run at coarser resolutions. The coastal current becomes unstable upstream of its front when the polynya is adjacent to the coast. When the polynya is situated offshore, an unstable current is produced from its outset owing to the capture of cyclonic eddies. The effect of a coastal protrusion and a canyon on the current motion is investigated. In particular, due to the convex shape of the coastal protrusion, the current sheds a dipolar eddy.
Resumo:
We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120-400K. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54Å and 1.35Å respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Resumo:
This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.
Resumo:
Understanding how climate change can affect crop-pollinator systems helps predict potential geographical mismatches between a crop and its pollinators, and therefore identify areas vulnerable to loss of pollination services. We examined the distribution of orchard species (apples, pears, plums and other top fruits) and their pollinators in Great Britain, for present and future climatic conditions projected for 2050 under the SRES A1B Emissions Scenario. We used a relative index of pollinator availability as a proxy for pollination service. At present there is a large spatial overlap between orchards and their pollinators, but predictions for 2050 revealed that the most suitable areas for orchards corresponded to low pollinator availability. However, we found that pollinator availability may persist in areas currently used for fruit production, but which are predicted to provide sub-optimal environmental suitability for orchard species in the future. Our results may be used to identify mitigation options to safeguard orchard production against the risk of pollination failure in Great Britain over the next 50 years; for instance choosing fruit tree varieties that are adapted to future climatic conditions, or boosting wild pollinators through improving landscape resources. Our approach can be readily applied to other regions and crop systems, and expanded to include different climatic scenarios.
Resumo:
Between the eleventh and thirteenth centuries AD, the Lower Vistula valley represented a permeable and shifting frontier between Pomerelia (eastern Pomerania), which had been incorporated into the Polish Christian state by the end of the tenth century, and the territories of western Prussian tribes, who had resisted attempts at Christianization. Pomeranian colonization eventually began to falter in the latter decades of the twelfth and early thirteenth centuries, most likely as a result of Prussian incursions, which saw the abandonment of sites across the borderland. Subsequently, the Teutonic Order and its allies led a protracted holy war against the Prussian tribes, which resulted in the conquest of the region and its incorporation into a theocratic state by the end of the thirteenth century. This was accompanied by a second wave of colonization, which resulted in the settlement pattern that is still visible in the landscape of north-central Poland today. However, not all colonies were destroyed or abandoned in between the two phases of colonization. The recently excavated site of Biała Góra, situated on the western side of the Forest of Sztum overlooking the River Nogat, represents a unique example of a transitional settlement that included both Pomeranian and Teutonic Order phases. The aim of this paper is to situate the site within its broader landscape context which can be characterized as a militarized frontier, where, from the later twelfth century and throughout much of the thirteenth century, political and economic expansion was combined with the ideology of Christian holy war and missionary activity. This paper considers how the colonists provisioned and sustained themselves in comparison to other sites within the region, and how Biała Góra may be tentatively linked to a documented but otherwise lost outpost in this volatile borderland.
Resumo:
Much of the ongoing discussion regarding synchrony or bipolar asynchrony of paleoclimate events has centered on the timing and structure of the last glacial termination in the southern mid- latitudes, in particular the southwestern Patagonian region (50�e55�S). Its location adjacent to the Drake Passage andnear the southern margin of the southern westerly winds (SWW) allows examining the postulated links between the Southern Oceane SWW coupled system and tmospheric CO2 variations through the last glacial termination. Results from two sites located in the Última Esperanza area (52�S) allow us to infer SWW-driven changes in hydrologic balance during this critical time interval. These findings indicate peatland development under temperate/wet conditions between 14,600 and 14,900 cal yr BP, followed by cooling and a lake transgressive phase that led to a shallow lake during the early part of the Antarctic Cold Reversal (ACR, 13,600-14,600 cal yr BP), followed in turn by a deeper lake and modest warming during Younger Dryas time (YD, 11,800-13,000 cal yr BP), superseded by terrestrialization and forest expansion at the beginning of the Holocene. We propose that the SWW (i) strengthened and shifted northward during ACR time causing a precipitation rise in northwestern and southwestern Patagonia coeval with mid- and high-latitude cooling and a halt in the deglacial atmospheric CO2 rise; (ii) shifted southward during YD time causing a precipitation decline/increase in NW/SW Patagonia, respectively, high-latitude warming, and invigorated CO2 release from the Southern Ocean; (iii) became weaker between 10,000 and 11,500 cal yr BP causing a precipitation decline throughout Patagonia, concurrent with peak mid- and high-latitude temperatures and atmospheric CO2 concentrations.
Resumo:
Habitat modification for agriculture is one of the greatest current threats to global biodiversity. Studies show large-scale population declines and short-term demographic impacts, but knowledge of the long-term effects of agriculture on individuals remains poor. This thesis examines the short- and long-term impact of agriculture on a reintroduced population of the Mauritius kestrel Falco punctatus, a tropical forest-dwelling raptor endemic to the island of Mauritius, that also utilises agricultural habitats. This population is a particularly appropriate model system, because complete life history data exists for individuals over a 22-year period, alongside detailed habitat and climate data. Agriculture has a short-term detrimental effect on Mauritius kestrel breeding success by exacerbating the seasonal decline in fledgling production. This is partly driven by the habitat-specific composition of the prey community that kestrels exploit to feed their chicks. The fledglings from agricultural territories tend to recruit in agricultural territories. This is largely due to poor natal dispersal and fine-scale spatial autocorrelation in the habitat matrix. Breeders do not respond to agriculture in the breeding territory by dispersing, unless the pair bond is broken. Therefore, individuals originating in agricultural territories tend to recruit, and remain in, agricultural territories throughout their lives. In addition to this, females from agricultural natal territories have shorter lifespans, schedule their peak reproductive output earlier in life, and exhibit more rapid senescence than non-agricultural females. The combination of this long-term effect and the adult experience of agriculture imposed by life history and environmental constraints, leads to a lower mean lifetime reproductive rate compared to females originating in non-agricultural habitats. These results demonstrate that agriculture experienced in early life has a lifelong effect on individuals. The effects can persist in time and space, with potentially delayed effects on population dynamics. These findings are important for understanding species’ responses to agricultural expansion.
Resumo:
There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely “pristine” and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor—and potentially lower population density—than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest–savanna biome shifts through the mid-to-late Holocene.