138 resultados para Northern Apennines
Resumo:
Using a transactions costs framework, we examine the impact of information and communication technologies (mobile phones and radios) use on market participation in developing country agricultural markets using a novel transaction-level data set of Ghanaian farmers. Our analysis of the choice of markets by farmers suggests that market information from a broader range of markets may not always induce farmers to sell in more distant markets; instead farmers may use broader market information to enhance their bargaining power in closer markets. Finally, we find weak evidence on the impact of using mobile phones in attracting farm gate buyers.
Resumo:
Future changes in the stratospheric circulation could have an important impact on Northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess Northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project – phase 5 (CMIP5) multi-model ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification and the stratospheric wind change on SLP. We find that the inter-model spread in stratospheric wind change contributes substantially to the inter-model spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
Resumo:
The Northern Hemisphere monsoons are an integral component of Earth's hydrological cycle and affect the lives of billions of people. Observed precipitation in the monsoon regions underwent substantial changes during the second half of the 20th century, with drying from the 1950s to mid-1980s and increasing precipitation in recent decades. Modeling studies suggest anthropogenic aerosols has been a key factor driving changes in tropical and monsoon precipitation. Here we apply detection and attribution methods to determine whether observed changes are driven by human influences using fingerprints of individual forcings (i.e. greenhouse gas, anthropogenic aerosol and natural) derived from climate models. The results show that the observed changes can only be explained when including the influence of anthropogenic aerosols, even after accounting for internal climate variability. Anthropogenic aerosol, not greenhouse gas or natural forcing, has been the dominant influence on Northern Hemisphere monsoon precipitation over the second half of the 20th century.
Resumo:
Consultation on the Reform of the Planning System in Northern Ireland commenced on 6 July 2009 with the publication of the long awaited proposals paper: 'Reform of the Planning System in Northern Ireland: Your chance to influence change'. A 12 week consultation period followed during which time a series of consultation roadshow events were undertaken. This report is an account of that strand of the reform consultation and the discussions that took place at the roadshows during a three week period in September 2009. The roadshow events formed the central part in a process of encouraging engagement and response to the Reform Proposals before the closing date of 2 October 2009. They were organised and facilitated by a team of event managers and independent planners who, together with key Planning Service personnel, attended a mixture of day and evening events in each of the new eleven council areas to hear the views and opinions of those who came along. Aside from being publicly advertised, over 1,500 invitations (written and e-invites) were issued to a wide range of sectors, including the business community,environmentalists, councils, community and voluntary groups and other organisations, and 1,000 fliers were issued to libraries, leisure centres, council offices and civic centres. In total almost 500 people took up the invitation and came along to one or more of the events.
Resumo:
Anthropogenic aerosols in the atmosphere have the potential to affect regional-scale land hydrology through solar dimming. Increased aerosol loading may have reduced historical surface evaporation over some locations, but the magnitude and extent of this effect is uncertain. Any reduction in evaporation due to historical solar dimming may have resulted in an increase in river flow. Here we formally detect and quantify the historical effect of changing aerosol concentrations, via solar radiation, on observed river flow over the heavily industrialized, northern extra-tropics. We use a state-of-the-art estimate of twentieth century surface meteorology as input data for a detailed land surface model, and show that the simulations capture the observed strong inter-annual variability in runoff in response to climatic fluctuations. Using statistical techniques, we identify a detectable aerosol signal in the observed river flow both over the combined region, and over individual river basins in Europe and North America. We estimate that solar dimming due to rising aerosol concentrations in the atmosphere around 1980 led to an increase in river runoff by up to 25% in the most heavily polluted regions in Europe. We propose that, conversely, these regions may experience reduced freshwater availability in the future, as air quality improvements are set to lower aerosol loading and solar dimming.
Resumo:
Sudden stratospheric warmings (SSWs) are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs) with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the “hiccup”, and which acts like a “mini SSW”, i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69N,16E) for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
Resumo:
At Hollow Banks Quarry, Scorton, located just north of Catterick (N Yorks.), a highly unusual group of 15 late Roman burials was excavated between 1998 and 2000. The small cemetery consists of almost exclusively male burials, dated to the fourth century. An unusually large proportion of these individuals was buried with crossbow brooches and belt fittings, suggesting that they may have been serving in the late Roman army or administration and may have come to Scorton from the Continent. Multi-isotope analyses (carbon, nitrogen, oxygen and strontium) of nine sufficiently well-preserved individuals indicate that seven males, all equipped with crossbow brooches and/or belt fittings, were not local to the Catterick area and that at least six of them probably came from the European mainland. Dietary (carbon and nitrogen isotope) analysis only of a tenth individual also suggests a non-local origin. At Scorton it appears that the presence of crossbow brooches and belts in the grave was more important for suggesting non-British origins than whether or not they were worn. This paper argues that cultural and social factors played a crucial part in the creation of funerary identities and highlights the need for both multi-proxy analyses and the careful contextual study of artefacts.
Resumo:
There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.
Resumo:
Slavic and German colonization of the southern Baltic between the 8th and 15th centuries A.D. is well-documented archaeologically and historically. Despite the large number of pollen profiles from Poland, few palaeoecological studies have examined the ecological impact of a process that was central to the expansion of European, Christian, societies. This study aims to redress this balance through multiproxy analysis of lake sediments from Radzyń Chełminski, Northern Poland, using pollen, element geochemistry (Inductively Coupled-Optical Emission Spectroscopy [ICP-OES]), organic content, and magnetic susceptibility. The close association between lake and medieval settlements presents the ideal opportunity to reconstruct past vegetation and land-use dynamics within a well-documented archaeological, historical, and cultural context. Three broad phases of increasing landscape impact are visible in the pollen and geochemical data dating from the 8th/9th, 10th/11th, and 13th centuries, reflecting successive phases of Slavic and German colonization. This involved the progressive clearance of oak-hornbeam dominated woodland and the development of an increasingly open agricultural landscape. Although the castles and towns of the Teutonic Order remain the most visible signs of medieval colonization, the palynological and geochemical data demonstrate that the major phase of woodland impact occurred during the preceding phase of Slavic expansion; Germans colonists were entering a landscape already significantly altered.
Resumo:
The LMD AGCM was iteratively coupled to the global BIOME1 model in order to explore the role of vegetation-climate interactions in response to mid-Holocene (6000 y BP) orbital forcing. The sea-surface temperature and sea-ice distribution used were present-day and CO2 concentration was pre-industrial. The land surface was initially prescribed with present-day vegetation. Initial climate “anomalies” (differences between AGCM results for 6000 y BP and control) were used to drive BIOME1; the simulated vegetation was provided to a further AGCM run, and so on. Results after five iterations were compared to the initial results in order to identify vegetation feedbacks. These were centred on regions showing strong initial responses. The orbitally induced high-latitude summer warming, and the intensification and extension of Northern Hemisphere tropical monsoons, were both amplified by vegetation feedbacks. Vegetation feedbacks were smaller than the initial orbital effects for most regions and seasons, but in West Africa the summer precipitation increase more than doubled in response to changes in vegetation. In the last iteration, global tundra area was reduced by 25% and the southern limit of the Sahara desert was shifted 2.5 °N north (to 18 °N) relative to today. These results were compared with 6000 y BP observational data recording forest-tundra boundary changes in northern Eurasia and savana-desert boundary changes in northern Africa. Although the inclusion of vegetation feedbacks improved the qualitative agreement between the model results and the data, the simulated changes were still insufficient, perhaps due to the lack of ocean-surface feedbacks.
Resumo:
Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present.
Resumo:
Lake records from northern Eurasia show regionally coherent patterns of changes during the late Quaternary. Lakes peripheral to the Scandinavian ice sheet were lower than those today but lakes in the Mediterranean zone were high at the glacial maximum, reflecting the dominance of glacial anticyclonic conditions in northern Europe and a southward shift of the Westerlies. The influence of the glacial anticyclonic circulation attenuated through the late glacial period, and the Westerlies gradually shifted northward, such that drier conditions south of the ice sheet were confined to a progressively narrower zone and the Mediterranean became drier. The early Holocene shows a gradual shift to conditions wetter than present in central Asia, associated with the expanded Asian monsoon, and in the Mediterranean, in response to local, monsoon-type circulation. There is no evidence of mid-continental aridity in northern Eurasia during the mid-Holocene. In contrast, the circum-Baltic region was drier, reflecting the increased incidence of blocking anticyclones centered on Scandinavia in summer. There is a gradual transition to modern conditions after ca. 5000 yr B.P. Although these broad-scale patterns are interrupted by shorter term fluctuations, the long-term trends in lake behavior show a clear response to changes in insolation and glaciation.
Resumo:
Changes in lake status, a measure of relative water depth or lake level, have been reconstructed from geological and biological evidence for 87 sites in northern Europe. During the early Holocene. the lakes show conditions similar to or drier than present in a broad band across southern Britain, southern Scandinavia and into the eastern Baltic and wetter conditions along the west coast and in central Europe. This pattern is consistent with the effects of a glacial anticyclone over the Scandinavian Ice Sheet, namely enhanced southwesterly flow along the west coast and strengthened easterlies south of the ice. After c, 8000 BP a different lake status pattern was established. with conditions drier than present over much of northern Europe. Lakes higher than today were confined to the far north, the west coast, eastern Finland and western Russia. This pattern gradually attenuated after 4000 BP. Differences in lake status during the mid- to late Holocene are consistent with a strengthening of the blocking anticyclone over the Baltic Sea in summer. resulting in more meridional circulation than today. This strengthening of the blocking anticyclone during the mid-Holocene is interpreted as a consequence of insolation changes, enhanced by the fact that the Baltic Sea was larger than present.
Resumo:
The last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord