108 resultados para Non-linear error correction models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vine-growing in the Less-Favoured Areas of Greece is facing multiple challenges that might lead to its abandonment. In an attempt to maintain rural populations, Rural Development Schemes have been created that offer the opportunity to rural households to maintain or expand their farming businesses including vine-growing. This paper stems from a study that used data from a cross-sectional survey of 204 farmers to investigate how farming systems and farmers’ perception of corruption, amongst other socio-economic factors, affected their decisions to continue vine-growing through participation in Rural Development Schemes, in three remote Less-Favoured Areas of Greece. The Theory of Planned Behaviour was used to frame the research problem with the assumption being that an individual’s intention to participate in a Scheme is based on their prior beliefs about it. Data from the survey were reduced and simplified by the use of non-linear principal component analysis. The ensuing variables were used in selectivity corrected ordered probit models to reveal farmers’ attitudes towards viticulture and rural development. It was found that economic factors, perceived corruption and farmers’ attitudes were significant determinants on whether to participate in the Schemes. The research findings highlight the important role of perceived corruption and the need for policies that facilitate farmers’ access to decision making centres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial robotic manipulators can be found in most factories today. Their tasks are accomplished through actively moving, placing and assembling parts. This movement is facilitated by actuators that apply a torque in response to a command signal. The presence of friction and possibly backlash have instigated the development of sophisticated compensation and control methods in order to achieve the desired performance may that be accurate motion tracking, fast movement or in fact contact with the environment. This thesis presents a dual drive actuator design that is capable of physically linearising friction and hence eliminating the need for complex compensation algorithms. A number of mathematical models are derived that allow for the simulation of the actuator dynamics. The actuator may be constructed using geared dc motors, in which case the benefits of torque magnification is retained whilst the increased non-linear friction effects are also linearised. An additional benefit of the actuator is the high quality, low latency output position signal provided by the differencing of the two drive positions. Due to this and the linearised nature of friction, the actuator is well suited for low velocity, stop-start applications, micro-manipulation and even in hard-contact tasks. There are, however, disadvantages to its design. When idle, the device uses power whilst many other, single drive actuators do not. Also the complexity of the models mean that parameterisation is difficult. Management of start-up conditions still pose a challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.