116 resultados para New career models
Resumo:
A new frontier in weather forecasting is emerging by operational forecast models now being run at convection-permitting resolutions at many national weather services. However, this is not a panacea; significant systematic errors remain in the character of convective storms and rainfall distributions. The DYMECS project (Dynamical and Microphysical Evolution of Convective Storms) is taking a fundamentally new approach to evaluate and improve such models: rather than relying on a limited number of cases, which may not be representative, we have gathered a large database of 3D storm structures on 40 convective days using the Chilbolton radar in southern England. We have related these structures to storm life-cycles derived by tracking features in the rainfall from the UK radar network, and compared them statistically to storm structures in the Met Office model, which we ran at horizontal grid length between 1.5 km and 100 m, including simulations with different subgrid mixing length. We also evaluated the scale and intensity of convective updrafts using a new radar technique. We find that the horizontal size of simulated convective storms and the updrafts within them is much too large at 1.5-km resolution, such that the convective mass flux of individual updrafts can be too large by an order of magnitude. The scale of precipitation cores and updrafts decreases steadily with decreasing grid lengths, as does the typical storm lifetime. The 200-m grid-length simulation with standard mixing length performs best over all diagnostics, although a greater mixing length improves the representation of deep convective storms.
Resumo:
The creative industries have attracted the attention of academics and policy makers for the complexity surrounding their development, supply-chains and models of production. In particular, many have recognised the difficulty in capturing the role that digital technologies play within the creative industries. Digital technologies are embedded in the production and market structures of the creative industries and are also partially distinct and discernible from it. This paper unfolds the role played by digital technologies focusing on a key aspect of its development: human capital. Using student micro-data collected by the Higher Education Statistical Agency (HESA) in the United Kingdom, we investigate the characteristics and location determinants of digital graduates. The paper deals specifically with understanding whether digital skills in the UK are equally embedded across the creative industries, or are concentrated in other sub-sectors. Furthermore, it explores the role that these graduates play in each sub-sector and their financial rewards. Findings suggest that digital technology graduates tend to concentrate in the software and gaming sub-sector of the creative industries but also are likely to be in embedded creative jobs outside of the creative industries. Although they are more likely to be in full-time employment than part-time or self-employment, they also suffer from a higher level of unemployment.
Resumo:
The high computational cost of calculating the radiative heating rates in numerical weather prediction (NWP) and climate models requires that calculations are made infrequently, leading to poor sampling of the fast-changing cloud field and a poor representation of the feedback that would occur. This paper presents two related schemes for improving the temporal sampling of the cloud field. Firstly, the ‘split time-stepping’ scheme takes advantage of the independent nature of the monochromatic calculations of the ‘correlated-k’ method to split the calculation into gaseous absorption terms that are highly dependent on changes in cloud (the optically thin terms) and those that are not (optically thick). The small number of optically thin terms can then be calculated more often to capture changes in the grey absorption and scattering associated with cloud droplets and ice crystals. Secondly, the ‘incremental time-stepping’ scheme uses a simple radiative transfer calculation using only one or two monochromatic calculations representing the optically thin part of the atmospheric spectrum. These are found to be sufficient to represent the heating rate increments caused by changes in the cloud field, which can then be added to the last full calculation of the radiation code. We test these schemes in an operational forecast model configuration and find a significant improvement is achieved, for a small computational cost, over the current scheme employed at the Met Office. The ‘incremental time-stepping’ scheme is recommended for operational use, along with a new scheme to correct the surface fluxes for the change in solar zenith angle between radiation calculations.
Resumo:
The present work describes a new tool that helps bidders improve their competitive bidding strategies. This new tool consists of an easy-to-use graphical tool that allows the use of more complex decision analysis tools in the field of Competitive Bidding. The graphic tool described here tries to move away from previous bidding models which attempt to describe the result of an auction or a tender process by means of studying each possible bidder with probability density functions. As an illustration, the tool is applied to three practical cases. Theoretical and practical conclusions on the great potential breadth of application of the tool are also presented.
Resumo:
The contraction of a species’ distribution range, which results from the extirpation of local populations, generally precedes its extinction. Therefore, understanding drivers of range contraction is important for conservation and management. Although there are many processes that can potentially lead to local extirpation and range contraction, three main null models have been proposed: demographic, contagion, and refuge. The first two models postulate that the probability of local extirpation for a given area depends on its relative position within the range; but these models generate distinct spatial predictions because they assume either a ubiquitous (demographic) or a clinal (contagion) distribution of threats. The third model (refuge) postulates that extirpations are determined by the intensity of human impacts, leading to heterogeneous spatial predictions potentially compatible with those made by the other two null models. A few previous studies have explored the generality of some of these null models, but we present here the first comprehensive evaluation of all three models. Using descriptive indices and regression analyses we contrast the predictions made by each of the null models using empirical spatial data describing range contraction in 386 terrestrial vertebrates (mammals, birds, amphibians, and reptiles) distributed across the World. Observed contraction patterns do not consistently conform to the predictions of any of the three models, suggesting that these may not be adequate null models to evaluate range contraction dynamics among terrestrial vertebrates. Instead, our results support alternative null models that account for both relative position and intensity of human impacts. These new models provide a better multifactorial baseline to describe range contraction patterns in vertebrates. This general baseline can be used to explore how additional factors influence contraction, and ultimately extinction for particular areas or species as well as to predict future changes in light of current and new threats.
Resumo:
Human Body Thermoregulation Models have been widely used in the field of human physiology or thermal comfort studies. However there are few studies on the evaluation method for these models. This paper summarises the existing evaluation methods and critically analyses the flaws. Based on that, a method for the evaluating the accuracy of the Human Body Thermoregulation models is proposed. The new evaluation method contributes to the development of Human Body Thermoregulation models and validates their accuracy both statistically and empirically. The accuracy of different models can be compared by the new method. Furthermore, the new method is not only suitable for the evaluation of Human Body Thermoregulation Models, but also can be theoretically applied to the evaluation of the accuracy of the population-based models in other research fields.
Resumo:
Inspired by the commercial desires of global brands and retailers to access the lucrative green consumer market, carbon is increasingly being counted and made knowable at the mundane sites of everyday production and consumption, from the carbon footprint of a plastic kitchen fork to that of an online bank account. Despite the challenges of counting and making commensurable the global warming impact of a myriad of biophysical and societal activities, this desire to communicate a product or service's carbon footprint has sparked complicated carbon calculative practices and enrolled actors at literally every node of multi-scaled and vastly complex global supply chains. Against this landscape, this paper critically analyzes the counting practices that create the ‘e’ in ‘CO2e’. It is shown that, central to these practices are a series of tools, models and databases which, in building upon previous work (Eden, 2012 and Star and Griesemer, 1989) we conceptualize here as ‘boundary objects’. By enrolling everyday actors from farmers to consumers, these objects abstract and stabilize greenhouse gas emissions from their messy material and social contexts into units of CO2e which can then be translated along a product's supply chain, thereby establishing a new currency of ‘everyday supply chain carbon’. However, in making all greenhouse gas-related practices commensurable and in enrolling and stabilizing the transfer of information between multiple actors these objects oversee a process of simplification reliant upon, and subject to, a multiplicity of approximations, assumptions, errors, discrepancies and/or omissions. Further the outcomes of these tools are subject to the politicized and commercial agendas of the worlds they attempt to link, with each boundary actor inscribing different meanings to a product's carbon footprint in accordance with their specific subjectivities, commercial desires and epistemic framings. It is therefore shown that how a boundary object transforms greenhouse gas emissions into units of CO2e, is the outcome of distinct ideologies regarding ‘what’ a product's carbon footprint is and how it should be made legible. These politicized decisions, in turn, inform specific reduction activities and ultimately advance distinct, specific and increasingly durable transition pathways to a low carbon society.
Resumo:
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants.
Resumo:
Phylogenetic comparative methods are increasingly used to give new insights into the dynamics of trait evolution in deep time. For continuous traits the core of these methods is a suite of models that attempt to capture evolutionary patterns by extending the Brownian constant variance model. However, the properties of these models are often poorly understood, which can lead to the misinterpretation of results. Here we focus on one of these models – the Ornstein Uhlenbeck (OU) model. We show that the OU model is frequently incorrectly favoured over simpler models when using Likelihood ratio tests, and that many studies fitting this model use datasets that are small and prone to this problem. We also show that very small amounts of error in datasets can have profound effects on the inferences derived from OU models. Our results suggest that simulating fitted models and comparing with empirical results is critical when fitting OU and other extensions of the Brownian model. We conclude by making recommendations for best practice in fitting OU models in phylogenetic comparative analyses, and for interpreting the parameters of the OU model.
Resumo:
Academic writing has a tendency to be turgid and impenetrable. This is not only anathema to communication between academics, but also a major barrier to advancing construction industry development. Clarity in our communication is a prerequisite to effective collaboration with industry. An exploration of what it means to be an academic in a University is presented in order to provide a context for a discussion on how academics might collaborate with industry to advance development. There are conflicting agendas that pull the academic in different directions: peer group recognition, institutional success and industry development. None can be achieved without the other, which results in the need for a careful balancing act. While academics search for better understandings and provisional explanations within the context of conceptual models, industry seeks the practical application of new ideas, whether the ideas come from research or experience. Universities have a key role to play in industry development and in economic development.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.