177 resultados para Long-range weather forecasts
Resumo:
Radiative forcing and climate sensitivity have been widely used as concepts to understand climate change. This work performs climate change experiments with an intermediate general circulation model (IGCM) to examine the robustness of the radiative forcing concept for carbon dioxide and solar constant changes. This IGCM has been specifically developed as a computationally fast model, but one that allows an interaction between physical processes and large-scale dynamics; the model allows many long integrations to be performed relatively quickly. It employs a fast and accurate radiative transfer scheme, as well as simple convection and surface schemes, and a slab ocean, to model the effects of climate change mechanisms on the atmospheric temperatures and dynamics with a reasonable degree of complexity. The climatology of the IGCM run at T-21 resolution with 22 levels is compared to European Centre for Medium Range Weather Forecasting Reanalysis data. The response of the model to changes in carbon dioxide and solar output are examined when these changes are applied globally and when constrained geographically (e.g. over land only). The CO2 experiments have a roughly 17% higher climate sensitivity than the solar experiments. It is also found that a forcing at high latitudes causes a 40% higher climate sensitivity than a forcing only applied at low latitudes. It is found that, despite differences in the model feedbacks, climate sensitivity is roughly constant over a range of distributions of CO2 and solar forcings. Hence, in the IGCM at least, the radiative forcing concept is capable of predicting global surface temperature changes to within 30%, for the perturbations described here. It is concluded that radiative forcing remains a useful tool for assessing the natural and anthropogenic impact of climate change mechanisms on surface temperature.
Resumo:
The convectively active part of the Madden-Julian Oscillation (MJO) propagates eastward through the warm pool, from the Indian Ocean through the Maritime Continent (the Indonesian archipelago) to the western Pacific. The Maritime Continent's complex topography means the exact nature of the MJO propagation through this region is unclear. Model simulations of the MJO are often poor over the region, leading to local errors in latent heat release and global errors in medium-range weather prediction and climate simulation. Using 14 northern winters of TRMM satellite data it is shown that, where the mean diurnal cycle of precipitation is strong, 80% of the MJO precipitation signal in the Maritime Continent is accounted for by changes in the amplitude of the diurnal cycle. Additionally, the relationship between outgoing long-wave radiation (OLR) and precipitation is weakened here, such that OLR is no longer a reliable proxy for precipitation. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation (anomalies of 2.5 mm day^-1 over 10^6 km^2) jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour can be accommodated into existing MJO theories. Frictional and topographic moisture convergence and relatively clear skies ahead of the main convective envelope combine with the low thermal inertia of the islands, to allow a rapid response in the diurnal cycle which rectifies onto the lower-frequency MJO. Hence, accurate representations of the diurnal cycle and its scale interaction appear to be necessary for models to simulate the MJO successfully.
Resumo:
A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.
Resumo:
In the last decade, the growth of local, site-specific weather forecasts delivered by mobile phone or website represents arguably the fastest change in forecast consumption since the beginning of Television weather forecasts 60 years ago. In this study, a street-interception survey of 274 members of the public a clear first preference for narrow weather forecasts above traditional broad weather forecasts is shown for the first time, with a clear bias towards this preference for users under 40. The impact of this change on the understanding of forecast probability and intensity information is explored. While the correct interpretation of the statement ‘There is a 30% chance of rain tomorrow’ is still low in the cohort, in common with previous studies, a clear impact of age and educational attainment on understanding is shown, with those under 40 and educated to degree level or above more likely to correctly interpret it. The interpretation of rainfall intensity descriptors (‘Light’, ‘Moderate’, ‘Heavy’) by the cohort is shown to be significantly different to official and expert assessment of the same descriptors and to have large variance amongst the cohort. However, despite these key uncertainties, members of the cohort generally seem to make appropriate decisions about rainfall forecasts. There is some evidence that the decisions made are different depending on the communication format used, and the cohort expressed a clear preference for tabular over graphical weather forecast presentation.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.
Resumo:
Ocean prediction systems are now able to analyse and predict temperature, salinity and velocity structures within the ocean by assimilating measurements of the ocean’s temperature and salinity into physically based ocean models. Data assimilation combines current estimates of state variables, such as temperature and salinity, from a computational model with measurements of the ocean and atmosphere in order to improve forecasts and reduce uncertainty in the forecast accuracy. Data assimilation generally works well with ocean models away from the equator but has been found to induce vigorous and unrealistic overturning circulations near the equator. A pressure correction method was developed at the University of Reading and the Met Office to control these circulations using ideas from control theory and an understanding of equatorial dynamics. The method has been used for the last 10 years in seasonal forecasting and ocean prediction systems at the Met Office and European Center for Medium-range Weather Forecasting (ECMWF). It has been an important element in recent re-analyses of the ocean heat uptake that mitigates climate change.
Resumo:
Identifying predictability and the corresponding sources for the western North Pacific (WNP) summer climate in the case of non-stationary teleconnections during recent decades benefits for further improvements of long-range prediction on the WNP and East Asian summers. In the past few decades, pronounced increases on the summer sea surface temperature (SST) and associated interannual variability are observed over the tropical Indian Ocean and eastern Pacific around the late 1970s and over the Maritime Continent and western–central Pacific around the early 1990s. These increases are associated with significant enhancements of the interannual variability for the lower-tropospheric wind over the WNP. In this study, we further assess interdecadal changes on the seasonal prediction of the WNP summer anomalies, using May-start retrospective forecasts from the ENSEMBLES multi-model project in the period 1960–2005. It is found that prediction of the WNP summer anomalies exhibits an interdecadal shift with higher prediction skills since the late 1970s, particularly after the early 1990s. Improvements of the prediction skills for SSTs after the late 1970s are mainly found around tropical Indian Ocean and the WNP. The better prediction of the WNP after the late 1970s may arise mainly from the improvement of the SST prediction around the tropical eastern Indian Ocean. The close teleconnections between the tropical eastern Indian Ocean and WNP summer variability work both in the model predictions and observations. After the early 1990s, on the other hand, the improvements are detected mainly around the South China Sea and Philippines for the lower-tropospheric zonal wind and precipitation anomalies, associating with a better description of the SST anomalies around the Maritime Continent. A dipole SST pattern over the Maritime Continent and the central equatorial Pacific Ocean is closely related to the WNP summer anomalies after the early 1990s. This teleconnection mode is quite predictable, which is realistically reproduced by the models, presenting more predictable signals to the WNP summer climate after the early 1990s.
Resumo:
The horizontal gradient of potential vorticity (PV) across the tropopause typically declines with lead time in global numerical weather forecasts and tends towards a steady value dependent on model resolution. This paper examines how spreading the tropopause PV contrast over a broader frontal zone affects the propagation of Rossby waves. The approach taken is to analyse Rossby waves on a PV front of finite width in a simple single-layer model. The dispersion relation for linear Rossby waves on a PV front of infinitesimal width is well known; here an approximate correction is derived for the case of a finite width front, valid in the limit that the front is narrow compared to the zonal wavelength. Broadening the front causes a decrease in both the jet speed and the ability of waves to propagate upstream. The contribution of these changes to Rossby wave phase speeds cancel at leading order. At second order the decrease in jet speed dominates, meaning phase speeds are slower on broader PV fronts. This asymptotic phase speed result is shown to hold for a wide class of single-layer dynamics with a varying range of PV inversion operators. The phase speed dependence on frontal width is verified by numerical simulations and also shown to be robust at finite wave amplitude, and estimates are made for the error in Rossby wave propagation speeds due to the PV gradient error present in numerical weather forecast models.
Resumo:
Using the method of Lorenz (1982), we have estimated the predictability of a recent version of the European Center for Medium-Range Weather Forecasting (ECMWF) model using two different estimates of the initial error corresponding to 6- and 24-hr forecast errors, respectively. For a 6-hr forecast error of the extratropical 500-hPa geopotential height field, a potential increase in forecast skill by more than 3 d is suggested, indicating a further increase in predictability by another 1.5 d compared to the use of a 24-hr forecast error. This is due to a smaller initial error and to an initial error reduction resulting in a smaller averaged growth rate for the whole 7-d forecast. A similar assessment for the tropics using the wind vector fields at 850 and 250 hPa suggests a huge potential improvement with a 7-d forecast providing the same skill as a 1-d forecast now. A contributing factor to the increase in the estimate of predictability is the apparent slow increase of error during the early part of the forecast.
Resumo:
The effect of A-block polydispersity on the phase behavior of AB diblock copolymer melts is examined using a complete self-consistent field theory treatment that allows for fractionation of the parent molecular-weight distribution. In addition to observing the established shift in phase boundaries, we find the emergence of significant two-phase coexistence regions causing, for instance, the disappearance of the complex phase window. Furthermore, we find evidence that polydispersity relieves packing frustration, which will reduce the tendency for long-range order.
Resumo:
Ventilation of the boundary layer has an important effect on local and regional air quality and is a prerequisite for long-range pollution transport. Once in the free troposphere, pollutants can alter the chemical composition of the troposphere and impact on the Earth's radiative forcing. Idealised baroclinic life cycles, LC1 and LC2, have been simulated in a three-dimensional dry hemispheric model in the presence of boundary-layer turbulent fluxes. A passive tracer is added to the simulations to represent pollution emitted at, or near, the surface. A simple conveyor-belt diagnostic is developed to objectively identify regions of the boundary layer that can be ventilated by either warm or cold conveyor belts. Transport of pollutants within and above the boundary layer is examined on synoptic scales. Three different physical mechanisms are found to interact with each other to ventilate pollutants out of the boundary layer. These mechanisms are turbulent mixing within the boundary layer, horizontal advection due to Ekman convergence and divergence within the boundary layer, and advection by the warm conveyor belt. The mass of tracer ventilated by the two life cycles is remarkably similar given the differences in frontal structure, suggesting that the large-scale baroclinicity is an effective constraint on ventilation.
Resumo:
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.
Resumo:
For many networks in nature, science and technology, it is possible to order the nodes so that most links are short-range, connecting near-neighbours, and relatively few long-range links, or shortcuts, are present. Given a network as a set of observed links (interactions), the task of finding an ordering of the nodes that reveals such a range-dependent structure is closely related to some sparse matrix reordering problems arising in scientific computation. The spectral, or Fiedler vector, approach for sparse matrix reordering has successfully been applied to biological data sets, revealing useful structures and subpatterns. In this work we argue that a periodic analogue of the standard reordering task is also highly relevant. Here, rather than encouraging nonzeros only to lie close to the diagonal of a suitably ordered adjacency matrix, we also allow them to inhabit the off-diagonal corners. Indeed, for the classic small-world model of Watts & Strogatz (1998, Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442) this type of periodic structure is inherent. We therefore devise and test a new spectral algorithm for periodic reordering. By generalizing the range-dependent random graph class of Grindrod (2002, Range-dependent random graphs and their application to modeling large small-world proteome datasets. Phys. Rev. E, 66, 066702-1–066702-7) to the periodic case, we can also construct a computable likelihood ratio that suggests whether a given network is inherently linear or periodic. Tests on synthetic data show that the new algorithm can detect periodic structure, even in the presence of noise. Further experiments on real biological data sets then show that some networks are better regarded as periodic than linear. Hence, we find both qualitative (reordered networks plots) and quantitative (likelihood ratios) evidence of periodicity in biological networks.
Resumo:
The experimental variogram computed in the usual way by the method of moments and the Haar wavelet transform are similar in that they filter data and yield informative summaries that may be interpreted. The variogram filters out constant values; wavelets can filter variation at several spatial scales and thereby provide a richer repertoire for analysis and demand no assumptions other than that of finite variance. This paper compares the two functions, identifying that part of the Haar wavelet transform that gives it its advantages. It goes on to show that the generalized variogram of order k=1, 2, and 3 filters linear, quadratic, and cubic polynomials from the data, respectively, which correspond with more complex wavelets in Daubechies's family. The additional filter coefficients of the latter can reveal features of the data that are not evident in its usual form. Three examples in which data recorded at regular intervals on transects are analyzed illustrate the extended form of the variogram. The apparent periodicity of gilgais in Australia seems to be accentuated as filter coefficients are added, but otherwise the analysis provides no new insight. Analysis of hyerpsectral data with a strong linear trend showed that the wavelet-based variograms filtered it out. Adding filter coefficients in the analysis of the topsoil across the Jurassic scarplands of England changed the upper bound of the variogram; it then resembled the within-class variogram computed by the method of moments. To elucidate these results, we simulated several series of data to represent a random process with values fluctuating about a mean, data with long-range linear trend, data with local trend, and data with stepped transitions. The results suggest that the wavelet variogram can filter out the effects of long-range trend, but not local trend, and of transitions from one class to another, as across boundaries.
Resumo:
The elucidation of spatial variation in the landscape can indicate potential wildlife habitats or breeding sites for vectors, such as ticks or mosquitoes, which cause a range of diseases. Information from remotely sensed data could aid the delineation of vegetation distribution on the ground in areas where local knowledge is limited. The data from digital images are often difficult to interpret because of pixel-to-pixel variation, that is, noise, and complex variation at more than one spatial scale. Landsat Thematic Mapper Plus (ETM+) and Satellite Pour l'Observation de La Terre (SPOT) image data were analyzed for an area close to Douna in Mali, West Africa. The variograms of the normalized difference vegetation index (NDVI) from both types of image data were nested. The parameters of the nested variogram function from the Landsat ETM+ data were used to design the sampling for a ground survey of soil and vegetation data. Variograms of the soil and vegetation data showed that their variation was anisotropic and their scales of variation were similar to those of NDVI from the SPOT data. The short- and long-range components of variation in the SPOT data were filtered out separately by factorial kriging. The map of the short-range component appears to represent the patterns of vegetation and associated shallow slopes and drainage channels of the tiger bush system. The map of the long-range component also appeared to relate to broader patterns in the tiger bush and to gentle undulations in the topography. The results suggest that the types of image data analyzed in this study could be used to identify areas with more moisture in semiarid regions that could support wildlife and also be potential vector breeding sites.