123 resultados para Lipschitz perturbation
Resumo:
Steep orography can cause noisy solutions and instability in models of the atmosphere. A new technique for modelling flow over orography is introduced which guarantees curl free gradients on arbitrary grids, implying that the pressure gradient term is not a spurious source of vorticity. This mimetic property leads to better hydrostatic balance and better energy conservation on test cases using terrain following grids. Curl-free gradients are achieved by using the co-variant components of velocity over orography rather than the usual horizontal and vertical components. In addition, gravity and acoustic waves are treated implicitly without the need for mean and perturbation variables or a hydrostatic reference profile. This enables a straightforward description of the implicit treatment of gravity waves. Results are presented of a resting atmosphere over orography and the curl-free pressure gradient formulation is advantageous. Results of gravity waves over orography are insensitive to the placement of terrain-following layers. The model with implicit gravity waves is stable in strongly stratified conditions, with N∆t up to at least 10 (where N is the Brunt-V ̈ais ̈al ̈a frequency). A warm bubble rising over orography is simulated and the curl free pressure gradient formulation gives much more accurate results for this test case than a model without this mimetic property.
Resumo:
This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalisations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results to the Sobolev spaces Hs(Ω) and tildeHs(Ω), for s in R and an open Ω in R^n. We exhibit examples in one and two dimensions of sets Ω for which these scales of Sobolev spaces are not interpolation scales. In the cases when they are interpolation scales (in particular, if Ω is Lipschitz) we exhibit examples that show that, in general, the interpolation norm does not coincide with the intrinsic Sobolev norm and, in fact, the ratio of these two norms can be arbitrarily large.
Resumo:
We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.
Resumo:
Anthropogenic ocean heat uptake is a key factor in determining climate change and sea-level rise. There is considerable uncertainty in projections of freshwater forcing of the ocean, with the potential to influence ocean heat uptake. We investigatethis by adding either -0.1 Sv or +0.1 Sv freshwater to the Atlantic in global climate model simulations, simultaneously imposing an atmospheric CO2 increase. The resulting changes in the Atlantic meridional overturning circulation are roughly equal and opposite (±2Sv). The impact of the perturbation on ocean heat content is more complex, although it is relatively small (~5%) compared to the total anthropogenic heat uptake. Several competing processes either accelerate or retard warming at different depths. Whilst positive freshwater perturbations cause an overall heating of the Atlantic, negative perturbations produce insignificant net changes in heat content. The processes active in our model appear robust, although their net result is likely model- and experiment-dependent.
Resumo:
The activation of aerosols to form cloud droplets is dependent upon vertical velocities whose local variability is not typically resolved at the GCM grid scale. Consequently, it is necessary to represent the subgrid-scale variability of vertical velocity in the calculation of cloud droplet number concentration. This study uses the UK Chemistry and Aerosols community model (UKCA) within the Hadley Centre Global Environmental Model (HadGEM3), coupled for the first time to an explicit aerosol activation parameterisation, and hence known as UKCA-Activate. We explore the range of uncertainty in estimates of the indirect aerosol effects attributable to the choice of parameterisation of the subgrid-scale variability of vertical velocity in HadGEM-UKCA. Results of simulations demonstrate that the use of a characteristic vertical velocity cannot replicate results derived with a distribution of vertical velocities, and is to be discouraged in GCMs. This study focuses on the effect of the variance (σw2) of a Gaussian pdf (probability density function) of vertical velocity. Fixed values of σw (spanning the range measured in situ by nine flight campaigns found in the literature) and a configuration in which σw depends on turbulent kinetic energy are tested. Results from the mid-range fixed σw and TKE-based configurations both compare well with observed vertical velocity distributions and cloud droplet number concentrations. The radiative flux perturbation due to the total effects of anthropogenic aerosol is estimated at −1.9 W m−2 with σw = 0.1 m s−1, −2.1 W m−2 with σw derived from TKE, −2.25 W m−2 with σw = 0.4 m s−1, and −2.3 W m−2 with σw = 0.7 m s−1. The breadth of this range is 0.4 W m−2, which is comparable to a substantial fraction of the total diversity of current aerosol forcing estimates. Reducing the uncertainty in the parameterisation of σw would therefore be an important step towards reducing the uncertainty in estimates of the indirect aerosol effects. Detailed examination of regional radiative flux perturbations reveals that aerosol microphysics can be responsible for some climate-relevant radiative effects, highlighting the importance of including microphysical aerosol processes in GCMs.
Resumo:
During many magnetospheric substorms, the auroral oval near midnight is observed to expand poleward in association with strong negative perturbations measured by local ground magnetometers. We show Sondrestrom and EISCAT incoherent scatter radar measurements during three such events. In each of the events, enhanced ionization produced by the precipitation moved northward by several degrees of latitude within 10–20 min. The electric fields measured during the three events were significantly different. In one event the electric field was southward everywhere within the precipitation region. In the other two events a reversal in the meridional component of the field was observed. In one case the reversal occurred within the precipitation region, while in the other case the reversal was at the poleward boundary of the precipitation. The westward electrojet that produces the negative H-perturbation in the ground magnetic field has Hall and Pedersen components to varying degrees. In one case the Hall component was eastward and the Pedersen component was westward, but the net magnetic H-deflection on the ground was negative. Simultaneous EISCAT measurements made near the dawn meridian during one of the events show that the polar cap boundary moved northward at the same time as the aurora expanded northward at Sondrestrom. Most of the differences in the electrodynamic configuration in the three events can be accounted for in terms of the location at which the measurements were made relative to the center of the auroral bulge.
Resumo:
With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.
Resumo:
The formation of new blood vessels from the pre-existing vasculature (angiogenesis) is a crucial stage in cancer progression and, indeed, angiogenesis inhibitors are now used as anticancer agents, clinically. Here we have explored the potential of flavonoid derivatives as antiangiogenic agents. Specifically, we have synthesised methoxy and 4-thio derivatives of the natural flavones quercetin and luteolin, two of which (4-thio quercetin and 4-thio luteolin) had never been previously reported. Seven of these compounds showed significant (P<0.05) antiangiogenic activity in an in vitro scratch assay. Their activity ranged from an 86% inhibition of the vascular endothelium growth factor (VEGF)-stimulated migration (observed for methoxyquercetin at 10 µM and for luteolin at 1 µM) to a 36% inhibition (for thiomethoxy quercetin at 10 µM). Western blotting studies showed that most (4 out of 7) compounds inhibited phosphorylation of the VEGF receptor-2 (VEGFR2), suggesting that the antiangiogenic activity was due to an interference with the VEGF/VEGFR2 pathway. Molecular modelling studies looking at the affinity of our compounds towards VEGFR and/or VEGF confirmed this hypothesis, and indeed the compound with the highest antiangiogenic activity (methoxyquercetin) showed the highest affinity towards VEGFR and VEGF. As reports from others have suggested that structurally similar compounds can elicit biological responses via a non-specific, promiscuous membrane perturbation, potential interactions of the active compounds with a model lipid bilayer were assessed via DSC. Luteolin and its derivatives did not perturb the model membrane even at concentrations 10 times higher than the biologically active concentration and only subtle interactions were observed for quercetin and its derivatives. Finally, cytotoxicity assessment of these flavonoid derivatives against MCF-7 breast cancer cells demonstrated also a direct anticancer activity albeit at generally higher concentrations than those required for an antiangiogenic effect (10 fold higher for the methoxy analogues). Taken together these results show promise for flavonoid derivatives as antiangiogenic agents.
Resumo:
The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic–euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the weakened capacity to retain P in the sedimentary reservoir due to bottom-water oxygen depletion. This general pattern is contrasted by the data of Gorgo a Cerbara, where the sediments deposited during the OAE 1a interval show P-enrichments (mainly authigenic P). This is associated with maxima in TOC values and Corg:Ptot ratios, suggesting that a part of the remobilized P was trapped in the sediments and as such prevented from returning to the water column.
Resumo:
This contribution is concerned with aposteriori error analysis of discontinuous Galerkin (dG) schemes approximating hyperbolic conservation laws. In the scalar case the aposteriori analysis is based on the L1 contraction property and the doubling of variables technique. In the system case the appropriate stability framework is in L2, based on relative entropies. It is only applicable if one of the solutions, which are compared to each other, is Lipschitz. For dG schemes approximating hyperbolic conservation laws neither the entropy solution nor the numerical solution need to be Lipschitz. We explain how this obstacle can be overcome using a reconstruction approach which leads to an aposteriori error estimate.
Resumo:
Methods to explicitly represent uncertainties in weather and climate models have been developed and refined over the past decade, and have reduced biases and improved forecast skill when implemented in the atmospheric component of models. These methods have not yet been applied to the land surface component of models. Since the land surface is strongly coupled to the atmospheric state at certain times and in certain places (such as the European summer of 2003), improvements in the representation of land surface uncertainty may potentially lead to improvements in atmospheric forecasts for such events. Here we analyse seasonal retrospective forecasts for 1981–2012 performed with the European Centre for Medium-Range Weather Forecasts’ (ECMWF) coupled ensemble forecast model. We consider two methods of incorporating uncertainty into the land surface model (H-TESSEL): stochastic perturbation of tendencies, and static perturbation of key soil parameters. We find that the perturbed parameter approach considerably improves the forecast of extreme air temperature for summer 2003, through better representation of negative soil moisture anomalies and upward sensible heat flux. Averaged across all the reforecasts the perturbed parameter experiment shows relatively little impact on the mean bias, suggesting perturbations of at least this magnitude can be applied to the land surface without any degradation of model climate. There is also little impact on skill averaged across all reforecasts and some evidence of overdispersion for soil moisture. The stochastic tendency experiments show a large overdispersion for the soil temperature fields, indicating that the perturbation here is too strong. There is also some indication that the forecast of the 2003 warm event is improved for the stochastic experiments, however the improvement is not as large as observed for the perturbed parameter experiment.
Resumo:
BACKGROUND Little is known about native and non-native rodent species interactions in complex tropical agro-ecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat and assessed over 6-months the response of R. tanezumi and other rodent species. RESULTS Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas, R. everetti selected microhabitat with a dense canopy. CONCLUSION Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, whilst the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control.
Resumo:
This study examines when “incremental” change is likely to trigger “discontinuous” change, using the lens of complex adaptive systems theory. Going beyond the simulations and case studies through which complex adaptive systems have been approached so far, we study the relationship between incremental organizational reconfigurations and discontinuous organizational restructurings using a large-scale database of U.S. Fortune 50 industrial corporations. We develop two types of escalation process in organizations: accumulation and perturbation. Under ordinary conditions, it is perturbation rather than the accumulation that is more likely to trigger subsequent discontinuous change. Consistent with complex adaptive systems theory, organizations are more sensitive to both accumulation and perturbation in conditions of heightened disequilibrium. Contrary to expectations, highly interconnected organizations are not more liable to discontinuous change. We conclude with implications for further research, especially the need to attend to the potential role of managerial design and coping when transferring complex adaptive systems theory from natural systems to organizational systems.
Resumo:
Solitar y meanders of the Agulhas Current, so-called Natal pulses, may play an important role in the overall dynamics of this current system. Several hypotheses concer ning the triggering of these pulses are tested using sea sur face height and temperature data from satellites. The data show the for mation of pulses in the Natal Bight area at irregular inter vals ranging from 50 to 240 days. Moving downstream at speeds between 10 and 20 km day 2 1 they sometimes reach sizes of up to 300 km. They seem to play a role in the shedding of Agulhas rings that penetrate the South Atlantic. The inter mittent for mation of these solitar y meanders is argued to be most probably related to barotropic instability of the strongly baroclinic Agulhas Current in the Natal Bight. The vorticity structure of the obser ved basic flow is argued to be stable anywhere along its path. However , a proper perturbation of the jet in the Natal Bight area will allow barotropic instability , because the bottom slope there is considerably less steep than elsewhere along the South African east coast. Using satellite altimetr y these perturbations seem to be related to the inter mittent presence of offshore anticyclonic anomalies, both upstream and eastward of the Natal Bight.
Resumo:
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.