112 resultados para Isotropic convex regions
Resumo:
The recent increase in R&D offshoring has raised fears that knowledge and competitiveness in advanced countries may be at risk of ‘hollowing out’. At the same time, economic research has stressed that this process is also likely to allow some reverse technology transfer and foster growth at home. This paper addresses this issue by investigating the extent to which R&D offshoring is associated with productivity dynamics of European regions. We find that offshoring regions have higher productivity growth, but this positive effect fades with the number of investment projects carried out abroad. A large and positive correlation emerges between the extent of R&D offshoring and the home region productivity growth, supporting the idea that carrying out R&D abroad strengthens European competitiveness.
Resumo:
The impact of the Tibetan Plateau uplift on the Asian monsoons and inland arid climates is an important but also controversial question in studies of paleoenvironmental change during the Cenozoic. In order to achieve a good understanding of the background for the formation of the Asian monsoons and arid environments, it is necessary to know the characteristics of the distribution of monsoon regions and arid zones in Asia before the plateau uplift. In this study, we discuss in detail the patterns of distribution of the Asian monsoon and arid regions before the plateau uplift on the basis of modeling results without topography from a global coupled atmosphere–ocean general circulation model, compare our results with previous simulation studies and available biogeological data, and review the uncertainties in the current knowledge. Based on what we know at the moment, tropical monsoon climates existed south of 20°N in South and Southeast Asia before the plateau uplift, while the East Asian monsoon was entirely absent in the extratropics. These tropical monsoons mainly resulted from the seasonal shifts of the Inter-Tropical Convergence Zone. There may have been a quasi-monsoon region in central-southern Siberia. Most of the arid regions in the Asian continent were limited to the latitudes of 20–40°N, corresponding to the range of the subtropical high pressure year-around. In the meantime, the present-day arid regions located in the relatively high latitudes in Central Asia were most likely absent before the plateau uplift. The main results from the above modeling analyses are qualitatively consistent with the available biogeological data. These results highlight the importance of the uplift of the Tibetan Plateau in the Cenozoic evolution of the Asian climate pattern of dry–wet conditions. Future studies should be focused on effects of the changes in land–sea distribution and atmospheric CO2 concentrations before and after the plateau uplift, and also on cross-comparisons between numerical simulations and geological evidence, so that a comprehensive understanding of the evolution of the Cenozoic paleoenvironments in Asia can be achieved.
Resumo:
Upper tropospheric and lower stratospheric measurements from the Aura Microwave Limb Sounder (MLS), the Aura High Resolution Dynamics Limb Sounder (HIRDLS), and the Atmospheric Chemistry Experiment-Fourier transform spectrometer (ACE-FTS) are used to present the first global climatological comparison of extratropical, nonpolar trace gas distributions in double-tropopause (DT) and single-tropopause (ST) regions. Stratospheric tracers, O3, HNO3, and HCl, have lower mixing ratios ∼2–8 km above the primary (lowermost) tropopause in DT than in ST regions in all seasons, with maximum Northern Hemisphere (NH) differences near 50% in winter and 30% in summer. Southern Hemisphere winter differences are somewhat smaller, but summer differences are similar in the two hemispheres. H2O in DT regions of both hemispheres shows strong negative anomalies in November through February and positive anomalies in July through October, reflecting the strong seasonal cycle in H2O near the tropical tropopause. CO and other tropospheric tracers examined have higher DT than ST values 2–7 km above the primary tropopause, with the largest differences in winter. Large DT-ST differences extend to high NH latitudes in fall and winter, with longitudinal maxima in regions associated with enhanced wave activity and subtropical jet variations. Results for O3 and HNO3 agree closely between MLS and HIRDLS, and differences from ACE-FTS are consistent with its sparse and irregular midlatitude sampling. Consistent signatures in climatological trace gas fields provide strong evidence that transport from the tropical upper troposphere into the layer between double tropopauses is an important pathway for stratosphere-troposphere exchange.
Resumo:
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Resumo:
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.