118 resultados para Forest genetics.
Resumo:
Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.
Resumo:
Background Hypothalamic–pituitary–adrenal (HPA) axis functioning has been implicated in the development of stress-related psychiatric diagnoses and response to adverse life experiences. This study aimed to investigate the association between genetic and epigenetics in HPA axis and response to cognitive behavior therapy (CBT). Methods Children with anxiety disorders were recruited into the Genes for Treatment project (GxT, N = 1,152). Polymorphisms of FKBP5 and GR were analyzed for association with response to CBT. Percentage DNA methylation at the FKBP5 and GR promoter regions was measured before and after CBT in a subset (n = 98). Linear mixed effect models were used to investigate the relationship between genotype, DNA methylation, and change in primary anxiety disorder severity (treatment response). Results Treatment response was not associated with FKBP5 and GR polymorphisms, or pretreatment percentage DNA methylation. However, change in FKBP5 DNA methylation was nominally significantly associated with treatment response. Participants who demonstrated the greatest reduction in severity decreased in percentage DNA methylation during treatment, whereas those with little/no reduction in severity increased in percentage DNA methylation. This effect was driven by those with one or more FKBP5 risk alleles, with no association seen in those with no FKBP5 risk alleles. No significant association was found between GR methylation and response. Conclusions Allele-specific change in FKBP5 methylation was associated with treatment response. This is the largest study to date investigating the role of HPA axis related genes in response to a psychological therapy. Furthermore, this is the first study to demonstrate that DNA methylation changes may be associated with response to psychological therapies in a genotype-dependent manner.
Resumo:
Archived soils could represent a valuable resource for the spatio-temporal inventory of soil carbon stability. However, archived soils are usually air-dried before storage and the impact of a drying pretreatment on physically and chemically-defined C fractions has not yet been fully assessed. Through the comparison of field-moist and corresponding air-dried (at 25oC for 2 weeks) forest soil samples, we examined the effect of air-drying on: a) the quantity and the quality of cold- (CWEC) and hot-water (HWEC) extractable C and b) the concentration of C in physically isolated fractions (free- and intra-aggregate light and organo-mineral). Soil samples were collected from the organic (O) and mineral (A and B) horizons of three different forest soils from southeastern England: (i) Cambisol under Pine (Pinus nigra); (ii) Cambisol under Beech (Fagus sylvatica) and (iii) Gleysol under oak (Quercus robur). CWEC concentrations for dry samples were up to 2 times greater than for corresponding field moist samples and had significantly (p < 0.001) higher phenolic content. However, the effect of drying pretreatment on HWEC, its phenolic content was not significant (p > 0.05) for most samples. Dried soils had significantly (p < 0.001) higher concentrations of free light-C while having lower concentrations of intra-aggregate-C when compared to moist samples (p < 0.001). However, fine silt and clay fractions were not significantly affected by the drying pretreatment (p=0.789). Therefore, based on the results obtained from gleysol and cambisol forest soils studied here, C contents in hot-water extractions and fine particle size physical fractions (< 25µm) seem to be robust measurements for evaluating C fractions in dried stored forest soils. Further soil types should be tested to evaluate the wider generality of these findings.
Resumo:
Duo Show: John Russell & Dan Mitchell.
Resumo:
Community resilience is widely understood as a critical element in the relatively under-explored concept of social resilience. Through engaging with ‘more-than-human’ literatures, a more expansive view of the ‘social’ emerges, which repositions individuals as networked and agency as relational. This moves resilience away from its hegemonic positioning as a neoliberal strategy of individualisation and responsibilisation, with it instead emerging as an everyday ‘doing’ embedded in the human and non-human networks of relationality that we form and are formed by. The paper develops this socio-cultural conceptualisation through an original and empirically grounded discussion of Finnish farm communities and the role of the forest in developing, maintaining and enhancing these essential, connective assemblages. Resilience becomes conceptualised as dynamic, uneven, multiple and contextual performances or resiliences. While this further problematizes the comparative measurement and operationalisation of resilience, its networked and relational nature arguably offers a more inclusive and ethically grounded concept that, furthermore, negates the socio-ecological divide that persists in resilience thinking.
Resumo:
We present a palaeoecological investigation of pre-Columbian land use in the savannah “forest island” landscape of north-east Bolivian Amazonia. A 5700 year sediment core from La Luna Lake, located adjacent to the La Luna forest island site, was analysed for fossil pollen and charcoal. We aimed to determine the palaeoenvironmental context of pre-Columbian occupation on the site and assess the environmental impact of land use in the forest island region. Evidence for anthropogenic burning and Zea mays L. cultivation began ~2000 cal a BP, at a time when the island was covered by savannah, under drier-than-present climatic conditions. After ~1240 cal a BP burning declined and afforestation occurred. We show that construction of the ring ditch, which encircles the island, did not involve substantial deforestation. Previous estimates of pre-Columbian population size in this region, based upon labour required for forest clearance, should therefore be reconsidered. Despite the high density of economically useful plants, such as Theobroma cacao, in the modern forest, no direct pollen evidence for agroforestry was found. However, human occupation is shown to pre-date and span forest expansion on this site, suggesting that here, and in the wider forest island region, there is no truly pre-anthropogenic ‘pristine’ forest.
Resumo:
South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.
Resumo:
Hannah is a 30 year old single mother with two young children. She is of Chinese descent and moved to the UK six years ago; she has a good level of English. Recently her mother suffered a heart attack, which prompted Hannah’s first visit to the general practitioner (GP). Meanwhile Hannah performed a predictive genetic test independently through an online company, which showed an increased risk of developing cardiovascular disease (CVD); she has the ɛ4 variant of the APOE gene. The company has recommended a daily supplement and dietary changes. Blood tests showed raised blood lipids and her GP referred Hannah to a dietitian for lifestyle management. Hannah is very concerned and anxious about her health.