202 resultados para Evolving modeling
Resumo:
Infant survival and the development of secure and cooperative relationships are central to the future of the species. In humans, this relies heavily on the evolving early parent–infant social and affective relationship. While much is known about the behavioural and psychological components of this relationship, relatively little is known about the underlying functional neuroanatomy. Affective and social neuroscience has helped to describe the main adult brain networks involved, but has so far engaged very little with developmental findings. In this review, we seek to highlight future avenues for research by providing a coherent framework for describing the parent–infant relationship over the first 18 months. We provide an outline of the evolving nature of the relationship, starting with basic orienting and recognition processes, and culminating in the infant's attainment of higher socio-emotional and cognitive capacities. Key social and affective interactions, such as communication, cooperative play and the establishment of specific attachments propel the development of the parent–infant relationship. We summarise our current knowledge of the developing infant brain in terms of structure and function, and how these relate to the emergent abilities necessary for the formation of a secure and cooperative relationship with parents or other caregivers. Important roles have been found for brain regions including the orbitofrontal, cingulate, and insular cortices in parent–infant interactions, but it has become clear that much more information is needed about the developmental time course and connectivity of these regions.
Resumo:
Current measures used to estimate the risks of toxic chemicals are not relevant to the goals of the environmental protection process, and thus ecological risk assessment (ERA) is not used as extensively as it should be as a basis for cost-effective management of environmental resources. Appropriate population models can provide a powerful basis for expressing ecological risks that better inform the environmental management process and thus that are more likely to be used by managers. Here we provide at least five reasons why population modeling should play an important role in bridging the gap between what we measure and what we want to protect. We then describe six actions needed for its implementation into management-relevant ERA.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Resumo:
This paper examines the interaction of spatial and dynamic aspects of resource extraction from forests by local people. Highly cyclical and varied across space and time, the patterns of resource extraction resulting from the spatial–temporal model bear little resemblance to the patterns drawn from focusing either on spatial or temporal aspects of extraction alone. Ignoring this variability inaccurately depicts villagers’ dependence on different parts of the forest and could result in inappropriate policies. Similarly, the spatial links in extraction decisions imply that policies imposed in one area can have unintended consequences in other areas. Combining the spatial–temporal model with a measure of success in community forest management—the ability to avoid open-access resource degradation—characterizes the impact of incomplete property rights on patterns of resource extraction and stocks.
Resumo:
Opportunistic land encroachment occurs in many low-income countries, gradually yet pervasively, until discrete areas of common land disappear. This paper, motivated by field observations in Karnataka, India, demonstrates that such an evolution of property rights from common to private may be efficient when the boundaries between common and private land are poorly defined, or ‘‘fuzzy.’’ Using a multi-period optimization model, and introducing the concept of stock and flow enforcement, I show how effectiveness of enforcement effort, whether encroachment is reversible, and punitive fines, influence whether an area of common land is fully defined and protected or gradually or rapidly encroached.
Resumo:
The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.
Resumo:
The plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Resumo:
To understand the resilience of aquatic ecosystems to environmental change, it is important to determine how multiple, related environmental factors, such as near-surface air temperature and river flow, will change during the next century. This study develops a novel methodology that combines statistical downscaling and fish species distribution modeling, to enhance the understanding of how global climate changes (modeled by global climate models at coarse-resolution) may affect local riverine fish diversity. The novelty of this work is the downscaling framework developed to provide suitable future projections of fish habitat descriptors, focusing particularly on the hydrology which has been rarely considered in previous studies. The proposed modeling framework was developed and tested in a major European system, the Adour-Garonne river basin (SW France, 116,000 km(2)), which covers distinct hydrological and thermal regions from the Pyrenees to the Atlantic coast. The simulations suggest that, by 2100, the mean annual stream flow is projected to decrease by approximately 15% and temperature to increase by approximately 1.2 °C, on average. As consequence, the majority of cool- and warm-water fish species is projected to expand their geographical range within the basin while the few cold-water species will experience a reduction in their distribution. The limitations and potential benefits of the proposed modeling approach are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Resumo:
The formulation and implementation of LEAF-2, the Land Ecosystem–Atmosphere Feedback model, which comprises the representation of land–surface processes in the Regional Atmospheric Modeling System (RAMS), is described. LEAF-2 is a prognostic model for the temperature and water content of soil, snow cover, vegetation, and canopy air, and includes turbulent and radiative exchanges between these components and with the atmosphere. Subdivision of a RAMS surface grid cell into multiple areas of distinct land-use types is allowed, with each subgrid area, or patch, containing its own LEAF-2 model, and each patch interacts with the overlying atmospheric column with a weight proportional to its fractional area in the grid cell. A description is also given of TOPMODEL, a land hydrology model that represents surface and subsurface downslope lateral transport of groundwater. Details of the incorporation of a modified form of TOPMODEL into LEAF-2 are presented. Sensitivity tests of the coupled system are presented that demonstrate the potential importance of the patch representation and of lateral water transport in idealized model simulations. Independent studies that have applied LEAF-2 and verified its performance against observational data are cited. Linkage of RAMS and TOPMODEL through LEAF-2 creates a modeling system that can be used to explore the coupled atmosphere–biophysical–hydrologic response to altered climate forcing at local watershed and regional basin scales.