135 resultados para Ensemble dominant connexe


Relevância:

20.00% 20.00%

Publicador:

Resumo:

With movement toward kilometer-scale ensembles, new techniques are needed for their characterization. A new methodology is presented for detailed spatial ensemble characterization using the fractions skill score (FSS). To evaluate spatial forecast differences, the average and standard deviation are taken of the FSS calculated over all ensemble member–member pairs at different scales and lead times. These methods were found to give important information about the ensemble behavior allowing the identification of useful spatial scales, spinup times for the model, and upscale growth of errors and forecast differences. The ensemble spread was found to be highly dependent on the spatial scales considered and the threshold applied to the field. High thresholds picked out localized and intense values that gave large temporal variability in ensemble spread: local processes and undersampling dominate for these thresholds. For lower thresholds the ensemble spread increases with time as differences between the ensemble members upscale. Two convective cases were investigated based on the Met Office United Model run at 2.2-km resolution. Different ensemble types were considered: ensembles produced using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) and an ensemble produced using different model physics configurations. Comparison of the MOGREPS and multiphysics ensembles demonstrated the utility of spatial ensemble evaluation techniques for assessing the impact of different perturbation strategies and the need for assessing spread at different, believable, spatial scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The skill of a forecast can be assessed by comparing the relative proximity of both the forecast and a benchmark to the observations. Example benchmarks include climatology or a naïve forecast. Hydrological ensemble prediction systems (HEPS) are currently transforming the hydrological forecasting environment but in this new field there is little information to guide researchers and operational forecasters on how benchmarks can be best used to evaluate their probabilistic forecasts. In this study, it is identified that the forecast skill calculated can vary depending on the benchmark selected and that the selection of a benchmark for determining forecasting system skill is sensitive to a number of hydrological and system factors. A benchmark intercomparison experiment is then undertaken using the continuous ranked probability score (CRPS), a reference forecasting system and a suite of 23 different methods to derive benchmarks. The benchmarks are assessed within the operational set-up of the European Flood Awareness System (EFAS) to determine those that are ‘toughest to beat’ and so give the most robust discrimination of forecast skill, particularly for the spatial average fields that EFAS relies upon. Evaluating against an observed discharge proxy the benchmark that has most utility for EFAS and avoids the most naïve skill across different hydrological situations is found to be meteorological persistency. This benchmark uses the latest meteorological observations of precipitation and temperature to drive the hydrological model. Hydrological long term average benchmarks, which are currently used in EFAS, are very easily beaten by the forecasting system and the use of these produces much naïve skill. When decomposed into seasons, the advanced meteorological benchmarks, which make use of meteorological observations from the past 20 years at the same calendar date, have the most skill discrimination. They are also good at discriminating skill in low flows and for all catchment sizes. Simpler meteorological benchmarks are particularly useful for high flows. Recommendations for EFAS are to move to routine use of meteorological persistency, an advanced meteorological benchmark and a simple meteorological benchmark in order to provide a robust evaluation of forecast skill. This work provides the first comprehensive evidence on how benchmarks can be used in evaluation of skill in probabilistic hydrological forecasts and which benchmarks are most useful for skill discrimination and avoidance of naïve skill in a large scale HEPS. It is recommended that all HEPS use the evidence and methodology provided here to evaluate which benchmarks to employ; so forecasters can have trust in their skill evaluation and will have confidence that their forecasts are indeed better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulation models are widely employed to make probability forecasts of future conditions on seasonal to annual lead times. Added value in such forecasts is reflected in the information they add, either to purely empirical statistical models or to simpler simulation models. An evaluation of seasonal probability forecasts from the Development of a European Multimodel Ensemble system for seasonal to inTERannual prediction (DEMETER) and ENSEMBLES multi-model ensemble experiments is presented. Two particular regions are considered: Nino3.4 in the Pacific and the Main Development Region in the Atlantic; these regions were chosen before any spatial distribution of skill was examined. The ENSEMBLES models are found to have skill against the climatological distribution on seasonal time-scales. For models in ENSEMBLES that have a clearly defined predecessor model in DEMETER, the improvement from DEMETER to ENSEMBLES is discussed. Due to the long lead times of the forecasts and the evolution of observation technology, the forecast-outcome archive for seasonal forecast evaluation is small; arguably, evaluation data for seasonal forecasting will always be precious. Issues of information contamination from in-sample evaluation are discussed and impacts (both positive and negative) of variations in cross-validation protocol are demonstrated. Other difficulties due to the small forecast-outcome archive are identified. The claim that the multi-model ensemble provides a ‘better’ probability forecast than the best single model is examined and challenged. Significant forecast information beyond the climatological distribution is also demonstrated in a persistence probability forecast. The ENSEMBLES probability forecasts add significantly more information to empirical probability forecasts on seasonal time-scales than on decadal scales. Current operational forecasts might be enhanced by melding information from both simulation models and empirical models. Simulation models based on physical principles are sometimes expected, in principle, to outperform empirical models; direct comparison of their forecast skill provides information on progress toward that goal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details a strategy for modifying the source code of a complex model so that the model may be used in a data assimilation context, {and gives the standards for implementing a data assimilation code to use such a model}. The strategy relies on keeping the model separate from any data assimilation code, and coupling the two through the use of Message Passing Interface (MPI) {functionality}. This strategy limits the changes necessary to the model and as such is rapid to program, at the expense of ultimate performance. The implementation technique is applied in different models with state dimension up to $2.7 \times 10^8$. The overheads added by using this implementation strategy in a coupled ocean-atmosphere climate model are shown to be an order of magnitude smaller than the addition of correlated stochastic random errors necessary for some nonlinear data assimilation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induction of classification rules from previously unseen examples is one of the most important data mining tasks in science as well as commercial applications. In order to reduce the influence of noise in the data, ensemble learners are often applied. However, most ensemble learners are based on decision tree classifiers which are affected by noise. The Random Prism classifier has recently been proposed as an alternative to the popular Random Forests classifier, which is based on decision trees. Random Prism is based on the Prism family of algorithms, which is more robust to noise. However, like most ensemble classification approaches, Random Prism also does not scale well on large training data. This paper presents a thorough discussion of Random Prism and a recently proposed parallel version of it called Parallel Random Prism. Parallel Random Prism is based on the MapReduce programming paradigm. The paper provides, for the first time, novel theoretical analysis of the proposed technique and in-depth experimental study that show that Parallel Random Prism scales well on a large number of training examples, a large number of data features and a large number of processors. Expressiveness of decision rules that our technique produces makes it a natural choice for Big Data applications where informed decision making increases the user’s trust in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sahelian summer rainfall, controlled by the West African monsoon, exhibited large-amplitude multidecadal variability during the twentieth century. Particularly important was the severe drought of the 1970s and 1980s, which had widespread impacts1–6. Research into the causes of this drought has identified anthropogenic aerosol forcing3,4,7 and changes in sea surface temperatures (SSTs; refs 1,2,6,8–11) as the most important drivers. Since the 1980s, there has been some recovery of Sahel rainfall amounts2–6,11–14, although not to the pre-drought levels of the 1940s and 1950s. Here we report on experiments with the atmospheric component of a state-of-the-art global climate model to identify the causes of this recovery. Our results suggest that the direct influence of higher levels of greenhouse gases in the atmosphere was the main cause, with an additional role for changes in anthropogenic aerosol precursor emissions. We find that recent changes in SSTs, although substantial, did not have a significant impact on the recovery. The simulated response to anthropogenic greenhouse-gas and aerosol forcing is consistent with a multivariate fingerprint of the observed recovery, raising confidence in our findings. Although robust predictions are not yet possible, our results suggest that the recent recovery in Sahel rainfall amounts is most likely to be sustained or amplified in the near term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the effect on balance of a number of Schur product-type localization schemes which have been designed with the primary function of reducing spurious far-field correlations in forecast error statistics. The localization schemes studied comprise a non-adaptive scheme (where the moderation matrix is decomposed in a spectral basis), and two adaptive schemes, namely a simplified version of SENCORP (Smoothed ENsemble COrrelations Raised to a Power) and ECO-RAP (Ensemble COrrelations Raised to A Power). The paper shows, we believe for the first time, how the degree of balance (geostrophic and hydrostatic) implied by the error covariance matrices localized by these schemes can be diagnosed. Here it is considered that an effective localization scheme is one that reduces spurious correlations adequately but also minimizes disruption of balance (where the 'correct' degree of balance or imbalance is assumed to be possessed by the unlocalized ensemble). By varying free parameters that describe each scheme (e.g. the degree of truncation in the schemes that use the spectral basis, the 'order' of each scheme, and the degree of ensemble smoothing), it is found that a particular configuration of the ECO-RAP scheme is best suited to the convective-scale system studied. According to our diagnostics this ECO-RAP configuration still weakens geostrophic and hydrostatic balance, but overall this is less so than for other schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrumental observations, palaeo-proxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviours mean that the precise nature and mechanisms of this variability are unclear. Here, we analyse an exceptionally large multi-model ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea co-vary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly-assimilation methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Debate over the late Quaternary megafaunal extinctions has focussed on whether human colonisation or climatic changes were more important drivers of extinction, with few extinctions being unambiguously attributable to either. Most analyses have been geographically or taxonomically restricted and the few quantitative global analyses have been limited by coarse temporal resolution or overly simplified climate reconstructions or proxies. We present a global analysis of the causes of these extinctions which uses high-resolution climate reconstructions and explicitly investigates the sensitivity of our results to uncertainty in the palaeological record. Our results show that human colonisation was the dominant driver of megafaunal extinction across the world but that climatic factors were also important. We identify the geographic regions where future research is likely to have the most impact, with our models reliably predicting extinctions across most of the world, with the notable exception of mainland Asia where we fail to explain the apparently low rate of extinction found in in the fossil record. Our results are highly robust to uncertainties in the palaeological record, and our main conclusions are unlikely to change qualitatively following minor improvements or changes in the dates of extinctions and human colonisation.