111 resultados para Empirical Algorithm Analysis
Resumo:
In this paper we present a novel approach to detect people meeting. The proposed approach works by translating people behaviour from trajectory information into semantic terms. Having available a semantic model of the meeting behaviour, the event detection is performed in the semantic domain. The model is learnt employing a soft-computing clustering algorithm that combines trajectory information and motion semantic terms. A stable representation can be obtained from a series of examples. Results obtained on a series of videos with different types of meeting situations show that the proposed approach can learn a generic model that can effectively be applied on the behaviour recognition of meeting situations.
Resumo:
In this paper, we investigate the pricing of crack spread options. Particular emphasis is placed on the question of whether univariate modeling of the crack spread or explicit modeling of the two underlyings is preferable. Therefore, we contrast a bivariate GARCH volatility model for cointegrated underlyings with the alternative of modeling the crack spread directly. Conducting an empirical analysis of crude oil/heating oil and crude oil/gasoline crack spread options traded on the New York Mercantile Exchange, the more simplistic univariate approach is found to be superior with respect to option pricing performance.
Resumo:
This paper investigates the effect of Energy Performance Certificate (EPC) ratings on residential prices in Wales. Drawing on a sample of approximately 192,000 transactions, the capitalisation of energy efficiency ratings into house prices is investigated using two approaches. The first adopts a cross-sectional framework to investigate the effect of EPC rating on price. The second approach applies a repeat-sales methodology to investigate the impact of EPC rating on house price appreciation. Statistically significant positive price premiums are estimated for dwellings in EPC bands A/B (12.8%) and C (3.5%) compared to houses in band D. For dwellings in band E (−3.6%) and F (−6.5%) there are statistically significant discounts. Such effects may not be the result of energy performance alone. In addition to energy cost differences, the price effect may be due to additional benefits of energy efficient features. An analysis of the private rental segment reveals that, in contrast to the general market, low-EPC rated dwellings were not traded at a significant discount. This suggests different implicit prices of potential energy savings for landlords and owner-occupiers.
Resumo:
Purpose – The purpose of this paper is to seek to shed light on the practice of incomplete corporate disclosure of quantitative Greenhouse gas (GHG) emissions and investigates whether external stakeholder pressure influences the existence, and separately, the completeness of voluntary GHG emissions disclosures by 431 European companies. Design/methodology/approach – A classification of reporting completeness is developed with respect to the scope, type and reporting boundary of GHG emissions based on the guidelines of the GHG Protocol, Global Reporting Initiative and the Carbon Disclosure Project. Logistic regression analysis is applied to examine whether proxies for exposure to climate change concerns from different stakeholder groups influence the existence and/or completeness of quantitative GHG emissions disclosure. Findings – From 2005 to 2009, on average only 15 percent of companies that disclose GHG emissions report them in a manner that the authors consider complete. Results of regression analyses suggest that external stakeholder pressure is a determinant of the existence but not the completeness of emissions disclosure. Findings are consistent with stakeholder theory arguments that companies respond to external stakeholder pressure to report GHG emissions, but also with legitimacy theory claims that firms can use carbon disclosure, in this case the incomplete reporting of emissions, as a symbolic act to address legitimacy exposures. Practical implications – Bringing corporate GHG emissions disclosure in line with recommended guidelines will require either more direct stakeholder pressure or, perhaps, a mandated disclosure regime. In the meantime, users of the data will need to carefully consider the relevance of the reported data and develop the necessary competencies to detect and control for its incompleteness. A more troubling concern is that stakeholders may instead grow to accept less than complete disclosure. Originality/value – The paper represents the first large-scale empirical study into the completeness of companies’ disclosure of quantitative GHG emissions and is the first to analyze these disclosures in the context of stakeholder pressure and its relation to legitimation.
Resumo:
Considering the sea ice decline in the Arctic during the last decades, polynyas are of high research interest since these features are core areas of new ice formation. The determination of ice formation requires accurate retrieval of polynya area and thin-ice thickness (TIT) distribution within the polynya.We use an established energy balance model to derive TITs with MODIS ice surface temperatures (Ts) and NCEP/DOE Reanalysis II in the Laptev Sea for two winter seasons. Improvements of the algorithm mainly concern the implementation of an iterative approach to calculate the atmospheric flux components taking the atmospheric stratification into account. Furthermore, a sensitivity study is performed to analyze the errors of the ice thickness. The results are the following: 1) 2-m air temperatures (Ta) and Ts have the highest impact on the retrieved ice thickness; 2) an overestimation of Ta yields smaller ice thickness errors as an underestimation of Ta; 3) NCEP Ta shows often a warm bias; and 4) the mean absolute error for ice thicknesses up to 20 cm is ±4.7 cm. Based on these results, we conclude that, despite the shortcomings of the NCEP data (coarse spatial resolution and no polynyas), this data set is appropriate in combination with MODIS Ts for the retrieval of TITs up to 20 cm in the Laptev Sea region. The TIT algorithm can be applied to other polynya regions and to past and future time periods. Our TIT product is a valuable data set for verification of other model and remote sensing ice thickness data.
Resumo:
A new sparse kernel density estimator is introduced based on the minimum integrated square error criterion combining local component analysis for the finite mixture model. We start with a Parzen window estimator which has the Gaussian kernels with a common covariance matrix, the local component analysis is initially applied to find the covariance matrix using expectation maximization algorithm. Since the constraint on the mixing coefficients of a finite mixture model is on the multinomial manifold, we then use the well-known Riemannian trust-region algorithm to find the set of sparse mixing coefficients. The first and second order Riemannian geometry of the multinomial manifold are utilized in the Riemannian trust-region algorithm. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.