108 resultados para Diagnostic Errors
Resumo:
There remains large disagreement between ice-water path (IWP) in observational data sets, largely because the sensors observe different parts of the ice particle size distribution. A detailed comparison of retrieved IWP from satellite observations in the Tropics (!30 " latitude) in 2007 was made using collocated measurements. The radio detection and ranging(radar)/light detection and ranging (lidar) (DARDAR) IWP data set, based on combined radar/lidar measurements, is used as a reference because it provides arguably the best estimate of the total column IWP. For each data set, usable IWP dynamic ranges are inferred from this comparison. IWP retrievals based on solar reflectance measurements, in the moderate resolution imaging spectroradiometer (MODIS), advanced very high resolution radiometer–based Climate Monitoring Satellite Applications Facility (CMSAF), and Pathfinder Atmospheres-Extended (PATMOS-x) datasets, were found to be correlated with DARDAR over a large IWP range (~20–7000 g m -2 ). The random errors of the collocated data sets have a close to lognormal distribution, and the combined random error of MODIS and DARDAR is less than a factor of 2, which also sets the upper limit for MODIS alone. In the same way, the upper limit for the random error of all considered data sets is determined. Data sets based on passive microwave measurements, microwave surface and precipitation products system (MSPPS), microwave integrated retrieval system (MiRS), and collocated microwave only (CMO), are largely correlated with DARDAR for IWP values larger than approximately 700 g m -2 . The combined uncertainty between these data sets and DARDAR in this range is slightly less MODIS-DARDAR, but the systematic bias is nearly an order of magnitude.
Resumo:
With the development of convection-permitting numerical weather prediction the efficient use of high resolution observations in data assimilation is becoming increasingly important. The operational assimilation of these observations, such as Dopplerradar radial winds, is now common, though to avoid violating the assumption of un- correlated observation errors the observation density is severely reduced. To improve the quantity of observations used and the impact that they have on the forecast will require the introduction of the full, potentially correlated, error statistics. In this work, observation error statistics are calculated for the Doppler radar radial winds that are assimilated into the Met Office high resolution UK model using a diagnostic that makes use of statistical averages of observation-minus-background and observation-minus-analysis residuals. This is the first in-depth study using the diagnostic to estimate both horizontal and along-beam correlated observation errors. By considering the new results obtained it is found that the Doppler radar radial wind error standard deviations are similar to those used operationally and increase as the observation height increases. Surprisingly the estimated observation error correlation length scales are longer than the operational thinning distance. They are dependent on both the height of the observation and on the distance of the observation away from the radar. Further tests show that the long correlations cannot be attributed to the use of superobservations or the background error covariance matrix used in the assimilation. The large horizontal correlation length scales are, however, in part, a result of using a simplified observation operator.
Resumo:
The co-polar correlation coefficient (ρhv) has many applications, including hydrometeor classification, ground clutter and melting layer identification, interpretation of ice microphysics and the retrieval of rain drop size distributions (DSDs). However, we currently lack the quantitative error estimates that are necessary if these applications are to be fully exploited. Previous error estimates of ρhv rely on knowledge of the unknown "true" ρhv and implicitly assume a Gaussian probability distribution function of ρhv samples. We show that frequency distributions of ρhv estimates are in fact highly negatively skewed. A new variable: L = -log10(1 - ρhv) is defined, which does have Gaussian error statistics, and a standard deviation depending only on the number of independent radar pulses. This is verified using observations of spherical drizzle drops, allowing, for the first time, the construction of rigorous confidence intervals in estimates of ρhv. In addition, we demonstrate how the imperfect co-location of the horizontal and vertical polarisation sample volumes may be accounted for. The possibility of using L to estimate the dispersion parameter (µ) in the gamma drop size distribution is investigated. We find that including drop oscillations is essential for this application, otherwise there could be biases in retrieved µ of up to ~8. Preliminary results in rainfall are presented. In a convective rain case study, our estimates show µ to be substantially larger than 0 (an exponential DSD). In this particular rain event, rain rate would be overestimated by up to 50% if a simple exponential DSD is assumed.