147 resultados para Data-driven energy e ciency
Resumo:
During a period of heliospheric disturbance in 2007-9 associated with a co-rotating interaction region (CIR), a characteristic periodic variation becomes apparent in neutron monitor data. This variation is phase locked to periodic heliospheric current sheet crossings. Phase-locked electrical variations are also seen in the terrestrial lower atmosphere in the southern UK, including an increase in the vertical conduction current density of fair weather atmospheric electricity during increases in the neutron monitor count rate and energetic proton count rates measured by spacecraft. At the same time as the conduction current increases, changes in the cloud microphysical properties lead to an increase in the detected height of the cloud base at Lerwick Observatory, Shetland, with associated changes in surface meteorological quantities. As electrification is expected at the base of layer clouds, which can influence droplet properties, these observations of phase-locked thermodynamic, cloud, atmospheric electricity and solar sector changes are not inconsistent with a heliospheric disturbance driving lower troposphere changes.
Resumo:
The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its interannual variability are estimated based on hourly near-surface wind speeds. Additionally, the possible impact of climatic changes on the energy output of a sample 2.5-MW turbine is discussed. GCM-driven RCM simulations capture the behavior and variability of current wind energy indices, even though some differences exist when compared with reanalysis-driven RCM simulations. Toward the end of the twenty-first century, projections show significant changes of energy density on annual average across Europe that are substantially stronger in seasonal terms. The emergence time of these changes varies from region to region and season to season, but some long-term trends are already statistically significant in the middle of the twenty-first century. Over northern and central Europe, the wind energy potential is projected to increase, particularly in winter and autumn. In contrast, energy potential over southern Europe may experience a decrease in all seasons except for the Aegean Sea. Changes for wind energy output follow the same patterns but are of smaller magnitude. The GCM/RCM model chains project a significant intensification of both interannual and intra-annual variability of energy density over parts of western and central Europe, thus imposing new challenges to a reliable pan-European energy supply in future decades.
Resumo:
The UK Government's Department for Energy and Climate Change has been investigating the feasibility of developing a national energy efficiency data framework covering both domestic and non-domestic buildings. Working closely with the Energy Saving Trust and energy suppliers, the aim is to develop a data framework to monitor changes in energy efficiency, develop and evaluate programmes and improve information available to consumers. Key applications of the framework are to understand trends in built stock energy use, identify drivers and evaluate the success of different policies. For energy suppliers, it could identify what energy uses are growing, in which sectors and why. This would help with market segmentation and the design of products. For building professionals, it could supplement energy audits and modelling of end-use consumption with real data and support the generation of accurate and comprehensive benchmarks. This paper critically examines the results of the first phase of work to construct a national energy efficiency data-framework for the domestic sector focusing on two specific issues: (a) drivers of domestic energy consumption in terms of the physical nature of the dwellings and socio-economic characteristics of occupants and (b) the impact of energy efficiency measures on energy consumption.
Resumo:
Anaerobic digestion (AD) technologies convert organic wastes and crops into methane-rich biogas for heating, electricity generation and vehicle fuel. Farm-based AD has proliferated in some EU countries, driven by favourable policies promoting sustainable energy generation and GHG mitigation. Despite increased state support there are still few AD plants on UK farms leading to a lack of normative data on viability of AD in the whole-farm context. Farmers and lenders are therefore reluctant to fund AD projects and policy makers are hampered in their attempts to design policies that adequately support the industry. Existing AD studies and modelling tools do not adequately capture the farm context within which AD interacts. This paper demonstrates a whole-farm, optimisation modelling approach to assess the viability of AD in a more holistic way, accounting for such issues as: AD scale, synergies and conflicts with other farm enterprises, choice of feedstocks, digestate use and impact on farm Net Margin. This modelling approach demonstrates, for example, that: AD is complementary to dairy enterprises, but competes with arable enterprises for farm resources. Reduced nutrient purchases significantly improve Net Margin on arable farms, but AD scale is constrained by the capacity of farmland to absorb nutrients in AD digestate.
Resumo:
We present an efficient graph-based algorithm for quantifying the similarity of household-level energy use profiles, using a notion of similarity that allows for small time–shifts when comparing profiles. Experimental results on a real smart meter data set demonstrate that in cases of practical interest our technique is far faster than the existing method for computing the same similarity measure. Having a fast algorithm for measuring profile similarity improves the efficiency of tasks such as clustering of customers and cross-validation of forecasting methods using historical data. Furthermore, we apply a generalisation of our algorithm to produce substantially better household-level energy use forecasts from historical smart meter data.
Resumo:
A better understanding of links between the properties of the urban environment and the exchange to the atmosphere is central to a wide range of applications. The numerous measurements of surface energy balance data in urban areas enable intercomparison of observed fluxes from distinct environments. This study analyzes a large database in two new ways. First, instead of normalizing fluxes using net all-wave radiation only the incoming radiative fluxes are used, to remove the surface attributes from the denominator. Second, because data are now available year-round, indices are developed to characterize the fraction of the surface (built; vegetation) actively engaged in energy exchanges. These account for shading patterns within city streets and seasonal changes in vegetation phenology; their impact on the partitioning of the incoming radiation is analyzed. Data from 19 sites in North America, Europe, Africa, and Asia (including 6-yr-long observation campaigns) are used to derive generalized surface–flux relations. The midday-period outgoing radiative fraction decreases with an increasing total active surface index, the stored energy fraction increases with an active built index, and the latent heat fraction increases with an active vegetated index. Parameterizations of these energy exchange ratios as a function of the surface indices [i.e., the Flux Ratio–Active Index Surface Exchange (FRAISE) scheme] are developed. These are used to define four urban zones that characterize energy partitioning on the basis of their active surface indices. An independent evaluation of FRAISE, using three additional sites from the Basel Urban Boundary Layer Experiment (BUBBLE), yields accurate predictions of the midday flux partitioning at each location.
Resumo:
As low carbon technologies become more pervasive, distribution network operators are looking to support the expected changes in the demands on the low voltage networks through the smarter control of storage devices. Accurate forecasts of demand at the single household-level, or of small aggregations of households, can improve the peak demand reduction brought about through such devices by helping to plan the appropriate charging and discharging cycles. However, before such methods can be developed, validation measures are required which can assess the accuracy and usefulness of forecasts of volatile and noisy household-level demand. In this paper we introduce a new forecast verification error measure that reduces the so called “double penalty” effect, incurred by forecasts whose features are displaced in space or time, compared to traditional point-wise metrics, such as Mean Absolute Error and p-norms in general. The measure that we propose is based on finding a restricted permutation of the original forecast that minimises the point wise error, according to a given metric. We illustrate the advantages of our error measure using half-hourly domestic household electrical energy usage data recorded by smart meters and discuss the effect of the permutation restriction.
Resumo:
A global aerosol transport model (Oslo CTM2) with main aerosol components included is compared to five satellite retrievals of aerosol optical depth (AOD) and one data set of the satellite-derived radiative effect of aerosols. The model is driven with meteorological data for the period November 1996 to June 1997 which is the time period investigated in this study. The modelled AOD is within the range of the AOD from the various satellite retrievals over oceanic regions. The direct radiative effect of the aerosols as well as the atmospheric absorption by aerosols are in both cases found to be of the order of 20 Wm−2 in certain regions in both the satellite-derived and the modelled estimates as a mean over the period studied. Satellite and model data exhibit similar patterns of aerosol optical depth, radiative effect of aerosols, and atmospheric absorption of the aerosols. Recently published results show that global aerosol models have a tendency to underestimate the magnitude of the clear-sky direct radiative effect of aerosols over ocean compared to satellite-derived estimates. However, this is only to a small extent the case with the Oslo CTM2. The global mean direct radiative effect of aerosols over ocean is modelled with the Oslo CTM2 to be –5.5 Wm−2 and the atmospheric aerosol absorption 1.5 Wm−2.
Resumo:
Many urban surface energy balance models now exist. These vary in complexity from simple schemes that represent the city as a concrete slab, to those which incorporate detailed representations of momentum and energy fluxes distributed within the atmospheric boundary layer. While many of these schemes have been evaluated against observations, with some models even compared with the same data sets, such evaluations have not been undertaken in a controlled manner to enable direct comparison. For other types of climate model, for instance the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS) experiments (Henderson-Sellers et al., 1993), such controlled comparisons have been shown to provide important insights into both the mechanics of the models and the physics of the real world. This paper describes the progress that has been made to date on a systematic and controlled comparison of urban surface schemes. The models to be considered, and their key attributes, are described, along with the methodology to be used for the evaluation.
The Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions
Resumo:
Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft’s cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.
Resumo:
The domestic (residential) sector accounts for 30% of the world’s energy consumption hence plays a substantial role in energy management and CO2 emissions reduction efforts. Energy models have been generally developed to mitigate the impact of climate change and for the sustainable management and planning of energy resources. Although there are different models and model categories, they are generally categorised into top down and bottom up. Significantly, top down models are based on aggregated data while bottom up models are based on disaggregated data. These approaches create fundamental differences which have been the centre of debate since the 1970’s. These differences have led to noticeable discrepancies in results which have led to authors arguing that the models are of a more complementary than a substituting nature. As a result developing methods suggest that there is the need to integrate either the two models (bottom up − top down) or aspects that combine two bottom up models or an upgrade of top down models to compensate for the documented limitations. Diverse schools of thought argue in favour of these integrations – currently known as hybrid models. In this paper complexities of identifying country specific and/or generic domestic energy models and their applications in different countries have been critically reviewed. Predominantly from the review it is evident that most of these methods have been adapted and used in the ‘western world’ with practically no such applications in Africa.
Resumo:
We present an efficient method of combining wide angle neutron scattering data with detailed atomistic models, allowing us to perform a quantitative and qualitative mapping of the organisation of the chain conformation in both glass and liquid phases. The structural refinement method presented in this work is based on the exploitation of the intrachain features of the diffraction pattern and its intimate linkage with atomistic models by the use of internal coordinates for bond lengths, valence angles and torsion rotations. Atomic connectivity is defined through these coordinates that are in turn assigned by pre-defined probability distributions, thus allowing for the models in question to be built stochastically. Incremental variation of these coordinates allows for the construction of models that minimise the differences between the observed and calculated structure factors. We present a series of neutron scattering data of 1,2 polybutadiene at the region 120-400K. Analysis of the experimental data yield bond lengths for C-C and C=C of 1.54Å and 1.35Å respectively. Valence angles of the backbone were found to be at 112° and the torsion distributions are characterised by five rotational states, a three-fold trans-skew± for the backbone and gauche± for the vinyl group. Rotational states of the vinyl group were found to be equally populated, indicating a largely atactic chan. The two backbone torsion angles exhibit different behaviour with respect to temperature of their trans population, with one of them adopting an almost all trans sequence. Consequently the resulting configuration leads to a rather persistent chain, something indicated by the value of the characteristic ratio extrapolated from the model. We compare our results with theoretical predictions, computer simulations, RIS models and previously reported experimental results.
Resumo:
The global vegetation response to climate and atmospheric CO2 changes between the last glacial maximum and recent times is examined using an equilibrium vegetation model (BIOME4), driven by output from 17 climate simulations from the Palaeoclimate Modelling Intercomparison Project. Features common to all of the simulations include expansion of treeless vegetation in high northern latitudes; southward displacement and fragmentation of boreal and temperate forests; and expansion of drought-tolerant biomes in the tropics. These features are broadly consistent with pollen-based reconstructions of vegetation distribution at the last glacial maximum. Glacial vegetation in high latitudes reflects cold and dry conditions due to the low CO2 concentration and the presence of large continental ice sheets. The extent of drought-tolerant vegetation in tropical and subtropical latitudes reflects a generally drier low-latitude climate. Comparisons of the observations with BIOME4 simulations, with and without consideration of the direct physiological effect of CO2 concentration on C3 photosynthesis, suggest an important additional role of low CO2 concentration in restricting the extent of forests, especially in the tropics. Global forest cover was overestimated by all models when climate change alone was used to drive BIOME4, and estimated more accurately when physiological effects of CO2 concentration were included. This result suggests that both CO2 effects and climate effects were important in determining glacial-interglacial changes in vegetation. More realistic simulations of glacial vegetation and climate will need to take into account the feedback effects of these structural and physiological changes on the climate.
Energy exchange in a dense urban environment Part II: impact of spatial heterogeneity of the surface
Resumo:
The centre of cities, characterised by spatial and temporal complexity, are challenging environments for micrometeorological research. This paper considers the impact of sensor location and heterogeneity of the urban surface on flux observations in the dense city centre of London, UK. Data gathered at two sites in close vicinity, but with different measurement heights, were analysed to investigate the influence of source area characteristics on long-term radiation and turbulent heat fluxes. Combining consideration of diffuse radiation and effects of specular reflections, the non-Lambertian urban surface is found to impact the measurements of surface albedo. Comparisons of observations from the two sites reveal that turbulent heat fluxes are similar under some flow conditions. However, they mostly observe processes at different scales due to their differing measurement heights, highlighting the critical impact of siting sensors in urban areas. A detailed source area analysis is presented to investigate the surface controls influencing the energy exchanges at the different scales
Resumo:
It is increasingly important to know about when energy is used in the home, at work and on the move. Issues of time and timing have not featured strongly in energy policy analysis and in modelling, much of which has focused on estimating and reducing total average annual demand per capita. If smarter ways of balancing supply and demand are to take hold, and if we are to make better use of decarbonised forms of supply, it is essential to understand and intervene in patterns of societal synchronisation. This calls for detailed knowledge of when, and on what occasions many people engage in the same activities at the same time, of how such patterns are changing, and of how might they be shaped. In addition, the impact of smart meters and controls partly depends on whether there is, in fact scope for shifting the timing of what people do, and for changing the rhythm of the day. Is the scheduling of daily life an arena that policy can influence, and if so how? The DEMAND Centre has been linking time use, energy consumption and travel diary data as a means of addressing these questions and in this working paper we present some of the issues and results arising from that exercise.