177 resultados para Currency forecast errors
Resumo:
The assimilation of observations with a forecast is often heavily influenced by the description of the error covariances associated with the forecast. When a temperature inversion is present at the top of the boundary layer (BL), a significant part of the forecast error may be described as a vertical positional error (as opposed to amplitude error normally dealt with in data assimilation). In these cases, failing to account for positional error explicitly is shown t o r esult in an analysis for which the inversion structure is erroneously weakened and degraded. In this article, a new assimilation scheme is proposed to explicitly include the positional error associated with an inversion. This is done through the introduction of an extra control variable to allow position errors in the a priori to be treated simultaneously with the usual amplitude errors. This new scheme, referred to as the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational assimilation of temperature. The floating BL scheme is tested with a series of idealised experiments a nd with real data from radiosondes. For each idealised experiment, the floating BL scheme gives an analysis which has the inversion structure and position in agreement with the truth, and outperforms the a ssimilation which accounts only for forecast a mplitude error. When the floating BL scheme is used to assimilate a l arge sample of radiosonde data, its ability to give an analysis with an inversion height in better agreement with that observed is confirmed. However, it is found that the use of Gaussian statistics is an inappropriate description o f t he error statistics o f t he extra c ontrol variable. This problem is alleviated by incorporating a non-Gaussian description of the new control variable in the new scheme. Anticipated challenges in implementing the scheme operationally are discussed towards the end of the article.
Resumo:
The sensitivity to the horizontal resolution of the climate, anthropogenic climate change, and seasonal predictive skill of the ECMWF model has been studied as part of Project Athena—an international collaboration formed to test the hypothesis that substantial progress in simulating and predicting climate can be achieved if mesoscale and subsynoptic atmospheric phenomena are more realistically represented in climate models. In this study the experiments carried out with the ECMWF model (atmosphere only) are described in detail. Here, the focus is on the tropics and the Northern Hemisphere extratropics during boreal winter. The resolutions considered in Project Athena for the ECMWF model are T159 (126 km), T511 (39 km), T1279 (16 km), and T2047 (10 km). It was found that increasing horizontal resolution improves the tropical precipitation, the tropical atmospheric circulation, the frequency of occurrence of Euro-Atlantic blocking, and the representation of extratropical cyclones in large parts of the Northern Hemisphere extratropics. All of these improvements come from the increase in resolution from T159 to T511 with relatively small changes for further resolution increases to T1279 and T2047, although it should be noted that results from this very highest resolution are from a previously untested model version. Problems in simulating the Madden–Julian oscillation remain unchanged for all resolutions tested. There is some evidence that increasing horizontal resolution to T1279 leads to moderate increases in seasonal forecast skill during boreal winter in the tropics and Northern Hemisphere extratropics. Sensitivity experiments are discussed, which helps to foster a better understanding of some of the resolution dependence found for the ECMWF model in Project Athena
Resumo:
Northern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with theECMWFIntegrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulationswith the 16-, 39-, and 125-km versions of the model as well as observations. In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in thewest and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this region for all model versions. The largest benefits of the 10-km simulation are the dramatically more accurate representation of the TC intensity distribution and the structure of the most intense storms. The model can generate a supertyphoon with a maximum surface wind speed of 68.4 m s21. The life cycle of an intense TC comprises intensity fluctuations that occur in apparent connection with the variations of the eyewall/rainband structure. These findings suggest that a hydrostatic model with cumulus parameterization and of high enough resolution could be efficiently used to simulate the TC intensity response (and the associated structural changes) to future climate change.
Landscape, regional and global estimates of nitrogen flux from land to sea: errors and uncertainties
Resumo:
Regional to global scale modelling of N flux from land to ocean has progressed to date through the development of simple empirical models representing bulk N flux rates from large watersheds, regions, or continents on the basis of a limited selection of model parameters. Watershed scale N flux modelling has developed a range of physically-based approaches ranging from models where N flux rates are predicted through a physical representation of the processes involved, through to catchment scale models which provide a simplified representation of true systems behaviour. Generally, these watershed scale models describe within their structure the dominant process controls on N flux at the catchment or watershed scale, and take into account variations in the extent to which these processes control N flux rates as a function of landscape sensitivity to N cycling and export. This paper addresses the nature of the errors and uncertainties inherent in existing regional to global scale models, and the nature of error propagation associated with upscaling from small catchment to regional scale through a suite of spatial aggregation and conceptual lumping experiments conducted on a validated watershed scale model, the export coefficient model. Results from the analysis support the findings of other researchers developing macroscale models in allied research fields. Conclusions from the study confirm that reliable and accurate regional scale N flux modelling needs to take account of the heterogeneity of landscapes and the impact that this has on N cycling processes within homogenous landscape units.
Resumo:
This study evaluates the use of European Centre for Medium-Range Weather Forecasts (ECMWF) products in monitoring and forecasting drought conditions during the recent 2010–2011 drought in the Horn of Africa (HoA). The region was affected by a precipitation deficit in both the October–December 2010 and March–May 2011 rainy seasons. These anomalies were captured by the ERA-Interim reanalysis (ERAI), despite its limitations in representing the March–May interannual variability. Soil moisture anomalies of ERAI also identified the onset of the drought condition early in October 2010 with a persistent drought still present in September 2011. This signal was also evident in normalized difference vegetation index (NDVI) remote sensing data. The precipitation deficit in October–December 2010 was associated with a strong La Niña event. The ECMWF seasonal forecasts for the October–December 2010 season predicted the La Niña event from June 2010 onwards. The forecasts also predicted a below-average October–December rainfall, from July 2010 onwards. The subsequent March–May rainfall anomaly was only captured by the new ECWMF seasonal forecast system in the forecasts starting in March 2011. Our analysis shows that a recent (since 1999) drying in the region during the March–May season is captured by the new ECMWF seasonal forecast system and is consistent with recently published results. The HoA region and its population are highly vulnerable to future droughts, thus global monitoring and forecasting of drought, such as that presented here, will become increasingly important in the future. Copyright © 2012 Royal Meteorological Society
Resumo:
We introduce an algorithm (called REDFITmc2) for spectrum estimation in the presence of timescale errors. It is based on the Lomb-Scargle periodogram for unevenly spaced time series, in combination with the Welch's Overlapped Segment Averaging procedure, bootstrap bias correction and persistence estimation. The timescale errors are modelled parametrically and included in the simulations for determining (1) the upper levels of the spectrum of the red-noise AR(1) alternative and (2) the uncertainty of the frequency of a spectral peak. Application of REDFITmc2 to ice core and stalagmite records of palaeoclimate allowed a more realistic evaluation of spectral peaks than when ignoring this source of uncertainty. The results support qualitatively the intuition that stronger effects on the spectrum estimate (decreased detectability and increased frequency uncertainty) occur for higher frequencies. The surplus information brought by algorithm REDFITmc2 is that those effects are quantified. Regarding timescale construction, not only the fixpoints, dating errors and the functional form of the age-depth model play a role. Also the joint distribution of all time points (serial correlation, stratigraphic order) determines spectrum estimation.
Resumo:
Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.
Resumo:
In this paper, we examine the temporal stability of the evidence for two commodity futures pricing theories. We investigate whether the forecast power of commodity futures can be attributed to the extent to which they exhibit seasonality and we also consider whether there are time varying parameters or structural breaks in these pricing relationships. Compared to previous studies, we find stronger evidence of seasonality in the basis, which supports the theory of storage. The power of the basis to forecast subsequent price changes is also strengthened, while results on the presence of a risk premium are inconclusive. In addition, we show that the forecasting power of commodity futures cannot be attributed to the extent to which they exhibit seasonality. We find that in most cases where structural breaks occur, only changes in the intercepts and not the slopes are detected, illustrating that the forecast power of the basis is stable over different economic environments.
Resumo:
In order to validate the reported precision of space‐based atmospheric composition measurements, validation studies often focus on measurements in the tropical stratosphere, where natural variability is weak. The scatter in tropical measurements can then be used as an upper limit on single‐profile measurement precision. Here we introduce a method of quantifying the scatter of tropical measurements which aims to minimize the effects of short‐term atmospheric variability while maintaining large enough sample sizes that the results can be taken as representative of the full data set. We apply this technique to measurements of O3, HNO3, CO, H2O, NO, NO2, N2O, CH4, CCl2F2, and CCl3F produced by the Atmospheric Chemistry Experiment–Fourier Transform Spectrometer (ACE‐FTS). Tropical scatter in the ACE‐FTS retrievals is found to be consistent with the reported random errors (RREs) for H2O and CO at altitudes above 20 km, validating the RREs for these measurements. Tropical scatter in measurements of NO, NO2, CCl2F2, and CCl3F is roughly consistent with the RREs as long as the effect of outliers in the data set is reduced through the use of robust statistics. The scatter in measurements of O3, HNO3, CH4, and N2O in the stratosphere, while larger than the RREs, is shown to be consistent with the variability simulated in the Canadian Middle Atmosphere Model. This result implies that, for these species, stratospheric measurement scatter is dominated by natural variability, not random error, which provides added confidence in the scientific value of single‐profile measurements.
Resumo:
At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.
Resumo:
SST errors in the tropical Atlantic are large and systematic in current coupled general-circulation models. We analyse the growth of these errors in the region of the south-eastern tropical Atlantic in initialised decadal hindcasts integrations for three of the models participating in the Coupled Model Inter-comparison Project 5. A variety of causes for the initial bias development are identified, but a crucial involvement is found, in all cases considered, of ocean-atmosphere coupling for their maintenance. These involve an oceanic “bridge” between the Equator and the Benguela-Angola coastal seas which communicates sub-surface ocean anomalies and constitutes a coupling between SSTs in the south-eastern tropical Atlantic and the winds over the Equator. The resulting coupling between SSTs, winds and precipitation represents a positive feedback for warm SST errors in the south-eastern tropical Atlantic.
Resumo:
The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.
Resumo:
In mid-March 2005 the northern lower stratospheric polar vortex experienced a severe stretching episode, bringing a large polar filament far south of Alaska toward Hawaii. This meridional intrusion of rare extent, coinciding with the polar vortex final warming and breakdown, was followed by a zonal stretching in the wake of the easterly propagating subtropical main flow. This caused polar air to remain over Hawaii for several days before diluting into the subtropics. After being successfully forecasted to pass over Hawaii by the high-resolution potential vorticity advection model Modèle Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection (MIMOSA), the filament was observed on isentropic surfaces between 415 K and 455 K (17–20 km) by the Jet Propulsion Laboratory stratospheric ozone lidar measurements at Mauna Loa Observatory, Hawaii, between 16 and 19 March 2005. It was materialized as a thin layer of enhanced ozone peaking at 1.6 ppmv in a region where the climatological values usually average 1.0 ppmv. These values were compared to those obtained by the three-dimensional Chemistry-Transport Model MIMOSA-CHIM. Agreement between lidar and model was excellent, particularly in the similar appearance of the ozone peak near 435 K (18.5 km) on 16 March, and the persistence of this layer at higher isentropic levels for the following three days. Passive ozone, also modeled by MIMOSA-CHIM, was at about 3–4 ppmv inside the filament while above Hawaii. A detailed history of the modeled chemistry inside the filament suggests that the air mass was still polar ozone–depleted when passing over Hawaii. The filament quickly separated from the main vortex after its Hawaiian overpass. It never reconnected and, in less than 10 days, dispersed entirely in the subtropics
Resumo:
Objective To undertake a process evaluation of pharmacists' recommendations arising in the context of a complex IT-enabled pharmacist-delivered randomised controlled trial (PINCER trial) to reduce the risk of hazardous medicines management in general practices. Methods PINCER pharmacists manually recorded patients’ demographics, details of interventions recommended, actions undertaken by practice staff and time taken to manage individual cases of hazardous medicines management. Data were coded and double entered into SPSS v15, and then summarised using percentages for categorical data (with 95% CI) and, as appropriate, means (SD) or medians (IQR) for continuous data. Key findings Pharmacists spent a median of 20 minutes (IQR 10, 30) reviewing medical records, recommending interventions and completing actions in each case of hazardous medicines management. Pharmacists judged 72% (95%CI 70, 74) (1463/2026) of cases of hazardous medicines management to be clinically relevant. Pharmacists recommended 2105 interventions in 74% (95%CI 73, 76) (1516/2038) of cases and 1685 actions were taken in 61% (95%CI 59, 63) (1246/2038) of cases; 66% (95%CI 64, 68) (1383/2105) of interventions recommended by pharmacists were completed and 5% (95%CI 4, 6) (104/2105) of recommendations were accepted by general practitioners (GPs), but not completed at the end of the pharmacists’ placement; the remaining recommendations were rejected or considered not relevant by GPs. Conclusions The outcome measures were used to target pharmacist activity in general practice towards patients at risk from hazardous medicines management. Recommendations from trained PINCER pharmacists were found to be broadly acceptable to GPs and led to ameliorative action in the majority of cases. It seems likely that the approach used by the PINCER pharmacists could be employed by other practice pharmacists following appropriate training.