116 resultados para Compactification and String Models
Resumo:
There is a growing consensus that the eleven year modulation of galactic cosmic rays (GCRs) resulting from solar activity is related to interplanetary propagating diffusive barriers (PDBs). The source of these PDBs is not well understood and numerical models describing GCR modulation simulate their effect by scaling the diffusion tensor to the interplanetary magnetic field strength (IMF). The implications of a century-scale change in solar wind speed and open solar flux, for numerical modelling of GCR modulation and the reconstruction of GCR variations over the last hundred years are discussed. The dominant role of the solar non-axisymmetric magnetic field in both forcing longitudinal solar wind speed fluctuations at solar maximum and in increasing the IMF is discussed in the context of a long-term rise in the open solar magnetic flux.
Resumo:
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Resumo:
Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.
Resumo:
Income growth in highly industrialised countries has resulted in consumer choice of foodstuffs no longer being primarily influenced by basic factors such as price and organoleptic features. From this perspective, the present study sets out to evaluate how and to what extent consumer choice is influenced by the possible negative effects on health and environment caused by the consumption of fruit containing deposits of pesticides and chemical products. The study describes the results of a survey which explores and estimates consumer willingness to pay in two forms: a yearly contribution for the abolition of the use of pesticides on fruit, and a premium price for organically grown apples guaranteed by a certified label. The same questionnaire was administered to two samples. The first was a conventional face-to-face survey of customers of large retail outlets located around Bologna (Italy); the second was an Internet sample. The discrete choice data were analysed by means of probit and tobit models to estimate the utility consumers attribute to organically grown fruit and to a pesticide ban. The research also addresses questions of validity and representativeness as a fundamental problem in web-based surveys.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
Many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of three components of a model-evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20-day hindcasts, initialised daily during two MJO events in winter 2009-10. The 13 models exhibit a range of skill: several have accurate forecasts to 20 days' lead, while others perform similarly to statistical models (8-11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic-heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to mid-level moistening at moderate rainfall and upper-level moistening for heavy rainfall. The mid-level moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary, but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out
Resumo:
Model intercomparisons have identified important deficits in the representation of the stable boundary layer by turbulence parametrizations used in current weather and climate models. However, detrimental impacts of more realistic schemes on the large-scale flow have hindered progress in this area. Here we implement a total turbulent energy scheme into the climate model ECHAM6. The total turbulent energy scheme considers the effects of Earth’s rotation and static stability on the turbulence length scale. In contrast to the previously used turbulence scheme, the TTE scheme also implicitly represents entrainment flux in a dry convective boundary layer. Reducing the previously exaggerated surface drag in stable boundary layers indeed causes an increase in southern hemispheric zonal winds and large-scale pressure gradients beyond observed values. These biases can be largely removed by increasing the parametrized orographic drag. Reducing the neutral limit turbulent Prandtl number warms and moistens low-latitude boundary layers and acts to reduce longstanding radiation biases in the stratocumulus regions, the Southern Ocean and the equatorial cold tongue that are common to many climate models.
Resumo:
This paper analyses the impacts of the 2003 CAP reform on the production of Italian olive oil controlling for the regional differences in olive oil production as well as for the differences between years. Italian olive oil production time series data from the Farm Accountancy Data Network for the 2000-2010 period at regional level is used to examine the effect of the 2003 Fischler reform on the production of olive oil. Production costs and payments received by farmers to support their income are considered. The data were collected at micro level based on a sample of farms representative of the production systems in the country. In order to consider the differences in production among the regions, eight representative regions in terms of surveyed farms are considered: Liguria, Toscana, Umbria, Lazio, Campania, Calabria, Puglia and Sicilia. We found that the most important factors affecting the production of olive oil are the area under olive groves and labour productivity. Results also show no evidence that the level of payments have an impact to the level of production, however, the type of payments has. Future work should explore the impact of the 2003 reform into the technical and production efficiency of the Italian olive oil farmers. It would be interesting to link the measures introduced by the cross compliance and the management practices of the different farms to have a more complete picture of the various parameters influencing the production of olive oil.
Resumo:
We analyse the ability of CMIP3 and CMIP5 coupled ocean–atmosphere general circulation models (CGCMs) to simulate the tropical Pacific mean state and El Niño-Southern Oscillation (ENSO). The CMIP5 multi-model ensemble displays an encouraging 30 % reduction of the pervasive cold bias in the western Pacific, but no quantum leap in ENSO performance compared to CMIP3. CMIP3 and CMIP5 can thus be considered as one large ensemble (CMIP3 + CMIP5) for multi-model ENSO analysis. The too large diversity in CMIP3 ENSO amplitude is however reduced by a factor of two in CMIP5 and the ENSO life cycle (location of surface temperature anomalies, seasonal phase locking) is modestly improved. Other fundamental ENSO characteristics such as central Pacific precipitation anomalies however remain poorly represented. The sea surface temperature (SST)-latent heat flux feedback is slightly improved in the CMIP5 ensemble but the wind-SST feedback is still underestimated by 20–50 % and the shortwave-SST feedbacks remain underestimated by a factor of two. The improvement in ENSO amplitudes might therefore result from error compensations. The ability of CMIP models to simulate the SST-shortwave feedback, a major source of erroneous ENSO in CGCMs, is further detailed. In observations, this feedback is strongly nonlinear because the real atmosphere switches from subsident (positive feedback) to convective (negative feedback) regimes under the effect of seasonal and interannual variations. Only one-third of CMIP3 + CMIP5 models reproduce this regime shift, with the other models remaining locked in one of the two regimes. The modelled shortwave feedback nonlinearity increases with ENSO amplitude and the amplitude of this feedback in the spring strongly relates with the models ability to simulate ENSO phase locking. In a final stage, a subset of metrics is proposed in order to synthesize the ability of each CMIP3 and CMIP5 models to simulate ENSO main characteristics and key atmospheric feedbacks.
Resumo:
Observations obtained during an 8-month deployment of AMF2 in a boreal environment in Hyytiälä, Finland, and the 20-year comprehensive in-situ data from SMEAR-II station enable the characterization of biogenic aerosol, clouds and precipitation, and their interactions. During “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program deployed the ARM 2nd Mobile Facility (AMF2) to Hyytiälä, Finland, for an 8-month intensive measurement campaign from February to September 2014. The primary research goal is to understand the role of biogenic aerosols in cloud formation. Hyytiälä is host to SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. Combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations allow the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. Together with the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes, in a boreal environment. The BAECC dataset provides opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures. In addition, numerical models are being used to bridge the gap between surface-based and tropospheric observations.