118 resultados para Climatic variability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An annually laminated, uranium-series dated, Holocene stalagmite from southeast Ethiopia has been analysed for growth rate and δ13C and δ18O variations at annual to biennial resolution, in order to provide the first long duration proxy record of decadal-scale rainfall variability in this climatically sensitive region. Our study site (10°N) is climatically influenced by both summer (June—August) and spring (March—May) rainfall caused by the annual movement of the Inter-Tropical Convergence Zone (ITCZ) and modulated by large-scale anomalies in the atmospheric circulation and in ocean temperatures. Here we show that stalagmite growth, episodic throughout the last 7800 years, demonstrates decadal-scale (8—25 yr) variability in both growth rate and δ 18O. A hydrological model was employed and indicates that this decadal variability is due to variations in the relative amounts of rainfall in the two rain seasons. Our record, unique in its combination of length (a total of ~1000 years), annual chronology and high resolution δ18O, shows for the first time that such decadal-scale variability in rainfall in this region has occurred through the Holocene, which implies persistent decadal-scale variability for the large-scale atmospheric and oceanic driving factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the atmospheric variability in the North Atlantic sector is associated with variations in the eddy-driven component of the zonal flow. Here we present a simple method to specifically diagnose this component of the flow using the low-level wind field (925–700 hpa ). We focus on the North Atlantic winter season in the ERA-40 reanalysis. Diagnostics of the latitude and speed of the eddy-driven jet stream are compared with conventional diagnostics of the North Atlantic Oscillation (NAO) and the East Atlantic (EA) pattern. This shows that the NAO and the EA both describe combined changes in the latitude and speed of the jet stream. It is therefore necessary, but not always sufficient, to consider both the NAO and the EA in identifying changes in the jet stream. The jet stream analysis suggests that there are three preferred latitudinal positions of the North Atlantic eddy-driven jet stream in winter. This result is in very good agreement with the application of a statistical mixture model to the two-dimensional state space defined by the NAO and the EA. These results are consistent with several other studies which identify four European/Atlantic regimes, comprising three jet stream patterns plus European blocking events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Africa is thought to be the region most vulnerable to the impacts of climate variability and change. Agriculture plays a dominant role in supporting rural livelihoods and economic growth over most of Africa. Three aspects of the vulnerability of food crop systems to climate change in Africa are discussed: the assessment of the sensitivity of crops to variability in climate, the adaptive capacity of farmers, and the role of institutions in adapting to climate change. The magnitude of projected impacts of climate change on food crops in Africa varies widely among different studies. These differences arise from the variety of climate and crop models used, and the different techniques used to match the scale of climate model output to that needed by crop models. Most studies show a negative impact of climate change on crop productivity in Africa. Farmers have proved highly adaptable in the past to short- and long-term variations in climate and in their environment. Key to the ability of farmers to adapt to climate variability and change will be access to relevant knowledge and information. It is important that governments put in place institutional and macro-economic conditions that support and facilitate adaptation and resilience to climate change at local, national and transnational level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology is presented for the development of a combined seasonal weather and crop productivity forecasting system. The first stage of the methodology is the determination of the spatial scale(s) on which the system could operate; this determination has been made for the case of groundnut production in India. Rainfall is a dominant climatic determinant of groundnut yield in India. The relationship between yield and rainfall has been explored using data from 1966 to 1995. On the all-India scale, seasonal rainfall explains 52% of the variance in yield. On the subdivisional scale, correlations vary between variance r(2) = 0.62 (significance level p < 10(-4)) and a negative correlation with r(2) = 0.1 (p = 0.13). The spatial structure of the relationship between rainfall and groundnut yield has been explored using empirical orthogonal function (EOF) analysis. A coherent, large-scale pattern emerges for both rainfall and yield. On the subdivisional scale (similar to 300 km), the first principal component (PC) of rainfall is correlated well with the first PC of yield (r(2) = 0.53, p < 10(-4)), demonstrating that the large-scale patterns picked out by the EOFs are related. The physical significance of this result is demonstrated. Use of larger averaging areas for the EOF analysis resulted in lower and (over time) less robust correlations. Because of this loss of detail when using larger spatial scales, the subdivisional scale is suggested as an upper limit on the spatial scale for the proposed forecasting system. Further, district-level EOFs of the yield data demonstrate the validity of upscaling these data to the subdivisional scale. Similar patterns have been produced using data on both of these scales, and the first PCs are very highly correlated (r(2) = 0.96). Hence, a working spatial scale has been identified, typical of that used in seasonal weather forecasting, that can form the basis of crop modeling work for the case of groundnut production in India. Last, the change in correlation between yield and seasonal rainfall during the study period has been examined using seasonal totals and monthly EOFs. A further link between yield and subseasonal variability is demonstrated via analysis of dynamical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seasonal climate prediction offers the potential to anticipate variations in crop production early enough to adjust critical decisions. Until recently, interest in exploiting seasonal forecasts from dynamic climate models (e.g. general circulation models, GCMs) for applications that involve crop simulation models has been hampered by the difference in spatial and temporal scale of GCMs and crop models, and by the dynamic, nonlinear relationship between meteorological variables and crop response. Although GCMs simulate the atmosphere on a sub-daily time step, their coarse spatial resolution and resulting distortion of day-to-day variability limits the use of their daily output. Crop models have used daily GCM output with some success by either calibrating simulated yields or correcting the daily rainfall output of the GCM to approximate the statistical properties of historic observations. Stochastic weather generators are used to disaggregate seasonal forecasts either by adjusting input parameters in a manner that captures the predictable components of climate, or by constraining synthetic weather sequences to match predicted values. Predicting crop yields, simulated with historic weather data, as a statistical function of seasonal climatic predictors, eliminates the need for daily weather data conditioned on the forecast, but must often address poor statistical properties of the crop-climate relationship. Most of the work on using crop simulation with seasonal climate forecasts has employed historic analogs based on categorical ENSO indices. Other methods based on classification of predictors or weather types can provide daily weather inputs to crop models conditioned on forecasts. Advances in climate-based crop forecasting in the coming decade are likely to include more robust evaluation of the methods reviewed here, dynamically embedding crop models within climate models to account for crop influence on regional climate, enhanced use of remote sensing, and research in the emerging area of 'weather within climate'.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Valuable insights into mechanisms of community responses to environmental change can be gained by analysing in tandem the variation in functional and taxonomic composition along environmental gradients. We assess the changes in species and functional trait composition (i.e. dominant traits and functional diversity) of diverse bee communities in contrasting fire-driven systems in two climatic regions: Mediterranean (scrub habitats in Israel) and temperate (chestnut forests in southern Switzerland). In both climatic regions, there were shifts in species diversity and composition related to post-fire age. In the temperate region, functional composition responded markedly to fire; however, in the Mediterranean, the taxonomic response to fire was not matched by functional replacement. These results suggest that greater functional stability to fire in the Mediterranean is achieved by replacement of functionally similar species (i.e. functional redundancy) which dominate under different environmental conditions in the heterogeneous landscapes of the region. In contrast, the greater functional response in the temperate region was attributed to a more rapid post-fire vegetation recovery and shorter time-window when favourable habitat was available relative to the Mediterranean. Bee traits can be used to predict the functional responses of bee communities to environmental changes in habitats of conservation importance in different regions with distinct disturbance regimes. However, predictions cannot be generalized from one climatic region to another where distinct habitat configurations occur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thymus is taxonomically a very complex genus with a high frequency of hybridisation and introgression among sympatric species. The variation in accumulation of leaf-surface flavonoids was investigated in 71 wild populations of Thymus front different putative hybrid swarm areas in Andalucia, Spain. Twenty-two flavones, five flavanones, two dihydroflavonols, a flavonol and two unknowns were detected by HPLC-DAD combined with LC-APCI-MS analysis. The majority of compounds were flavones with a lutelin-type substitution of the B-ring, in contrast to previous reports on Macedonian taxa, which predominantly accumulate flavones with apigenin-type substitution of the B-ring. Anatomical and morphometric studies, supported by cluster analysis, identified pure Thymus hyemalis and Thymus baeticus populations, and a large number of putative hybrids. Flavonoid variation was closely related to morphological variation in all populations and is suspected to be a result of genetic polymorphism. Principal component analysis identified the presence of species-specific and geographically linked chemotypes and putative hybrids with mixed morphological and chemical characteristics. Qualitative and quantitative flavonoid accumulation appears to be genetically regulated, while external factors play a secondary role. Flavonoid profiles can thus provide diagnostic markers for the taxonomy of Thymus and are also useful in detecting hybridising taxa. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A physically motivated statistical model is used to diagnose variability and trends in wintertime ( October - March) Global Precipitation Climatology Project (GPCP) pentad (5-day mean) precipitation. Quasi-geostrophic theory suggests that extratropical precipitation amounts should depend multiplicatively on the pressure gradient, saturation specific humidity, and the meridional temperature gradient. This physical insight has been used to guide the development of a suitable statistical model for precipitation using a mixture of generalized linear models: a logistic model for the binary occurrence of precipitation and a Gamma distribution model for the wet day precipitation amount. The statistical model allows for the investigation of the role of each factor in determining variations and long-term trends. Saturation specific humidity q(s) has a generally negative effect on global precipitation occurrence and with the tropical wet pentad precipitation amount, but has a positive relationship with the pentad precipitation amount at mid- and high latitudes. The North Atlantic Oscillation, a proxy for the meridional temperature gradient, is also found to have a statistically significant positive effect on precipitation over much of the Atlantic region. Residual time trends in wet pentad precipitation are extremely sensitive to the choice of the wet pentad threshold because of increasing trends in low-amplitude precipitation pentads; too low a choice of threshold can lead to a spurious decreasing trend in wet pentad precipitation amounts. However, for not too small thresholds, it is found that the meridional temperature gradient is an important factor for explaining part of the long-term trend in Atlantic precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Dispersal is regarded as critical to the stability of existing populations and the spread of invading species, but empirical data on the effect of travelling conditions during the transfer phase are rare. We present evidence that both timing and distance of ex-natal dispersal in buzzards (Buteo buteo) are strongly affected by weather. 2. Dispersal was recorded more often when the wind changed to a more southerly direction from the more common westerly winds, and when minimum temperatures were lower. The effect of wind direction was greatest in the winter and minimum temperature was most important in the autumn. Poor weather did not appear to initiate dispersal. 3. Dispersal distance was most strongly correlated with maximum temperature during dispersal and wind direction in the following 5-day period. Combined with the sex of the buzzard these three variables accounted for 60% of the variation in dispersal distance. 4. These results are important for conservationists who manage species recovery programs and wildlife managers who model biological invasions.