158 resultados para C51 - Model Construction and Estimation
Resumo:
Theoretical understanding of the implementation and use of innovations within construction contexts is discussed and developed. It is argued that both the rhetoric of the 'improvement agenda' within construction and theories of innovation fail to account for the complex contexts and disparate perspectives which characterize construction work. To address this, the concept of relative boundedness is offered. Relatively unbounded innovation is characterized by a lack of a coherent central driving force or mediator with the ability to reconcile potential conflicts and overcome resistance to implementation. This is a situation not exclusive to, but certainly indicative of, much construction project work. Drawing on empirical material from the implementation of new design and coordination technologies on a large construction project, the concept is developed, concentrating on the negotiations and translations implementation mobilized. An actor-network theory (ANT) approach is adopted, which emphasizes the roles that both human actors and non-human agents play in the performance and outcomes of these interactions. Three aspects of how relative boundedness is constituted and affected are described; through the robustness of existing practices and expectations, through the delegation of interests on to technological artefacts and through the mobilization of actors and artefacts to constrain and limit the scope of negotiations over new technology implementation.
Resumo:
Purpose-Unplanned changes in construction projects are common and lead to disruptive effects such as project delays, cost overruns and quality deviations. Rework due to unplanned changes can cost 10-15 per cent of contract value. By managing these changes more effectively, these disruptive effects can be minimised. Previous research has approached this problem from an information-processing view. In this knowledge age, the purpose of this paper is to argue that effective change management can be brought about by better understanding the significant role of knowledge during change situations. Design/methodology/approach - Within this knowledge-based context, the question of how construction project teams manage knowledge during unplanned change in the construction phase within collaborative team settings is investigated through a selected case study sample within the UK construction industry. Findings- Case study findings conclude that different forms of knowledge are created and shared between project team members during change events which is very much socially constructed and centred on tacit knowledge and experience of project personnel. Originality/value- Building on the case study findings the paper finally offers a model that represents the role of knowledge during managing project change.
Resumo:
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
Resumo:
The note proposes an efficient nonlinear identification algorithm by combining a locally regularized orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximized model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious model with excellent generalization performance. The D-optimality design criterion further enhances the model efficiency and robustness. An added advantage is that the user only needs to specify a weighting for the D-optimality cost in the combined model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
In this correspondence new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness via combined parameter regularization and new robust structural selective criteria. In parallel to parameter regularization, we use two classes of robust model selection criteria based on either experimental design criteria that optimizes model adequacy, or the predicted residual sums of squares (PRESS) statistic that optimizes model generalization capability, respectively. Three robust identification algorithms are introduced, i.e., combined A- and D-optimality with regularized orthogonal least squares algorithm, respectively; and combined PRESS statistic with regularized orthogonal least squares algorithm. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalization scheme in orthogonal least squares or regularized orthogonal least squares has been extended such that the new algorithms are computationally efficient. Numerical examples are included to demonstrate effectiveness of the algorithms.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
Objectives. Theoretic modeling and experimental studies suggest that functional electrical stimulation (FES) can improve trunk balance in spinal cord injured subjects. This can have a positive impact on daily life, increasing the volume of bimanual workspace, improving sitting posture, and wheelchair propulsion. A closed loop controller for the stimulation is desirable, as it can potentially decrease muscle fatigue and offer better rejection to disturbances. This paper proposes a biomechanical model of the human trunk, and a procedure for its identification, to be used for the future development of FES controllers. The advantage over previous models resides in the simplicity of the solution proposed, which makes it possible to identify the model just before a stimulation session ( taking into account the variability of the muscle response to the FES). Materials and Methods. The structure of the model is based on previous research on FES and muscle physiology. Some details could not be inferred from previous studies, and were determined from experimental data. Experiments with a paraplegic volunteer were conducted in order to measure the moments exerted by the trunk-passive tissues and artificially stimulated muscles. Data for model identification and validation also were collected. Results. Using the proposed structure and identification procedure, the model could adequately reproduce the moments exerted during the experiments. The study reveals that the stimulated trunk extensors can exert maximal moment when the trunk is in the upright position. In contrast, previous studies show that able-bodied subjects can exert maximal trunk extension when flexed forward. Conclusions. The proposed model and identification procedure are a successful first step toward the development of a model-based controller for trunk FES. The model also gives information on the trunk in unique conditions, normally not observable in able-bodied subjects (ie, subject only to extensor muscles contraction).
Resumo:
A review of current risk pricing practices in the financial, insurance and construction sectors is conducted through a comprehensive literature review. The purpose was to inform a study on risk and price in the tendering processes of contractors: specifically, how contractors take account of risk when they are calculating their bids for construction work. The reference to mainstream literature was in view of construction management research as a field of application rather than a fundamental academic discipline. Analytical models are used for risk pricing in the financial sector. Certain mathematical laws and principles of insurance are used to price risk in the insurance sector. construction contractors and practitioners are described to traditionally price allowances for project risk using mechanisms such as intuition and experience. Project risk analysis models have proliferated in recent years. However, they are rarely used because of problems practitioners face when confronted with them. A discussion of practices across the three sectors shows that the construction industry does not approach risk according to the sophisticated mechanisms of the two other sectors. This is not a poor situation in itself. However, knowledge transfer from finance and insurance can help construction practitioners. But also, formal risk models for contractors should be informed by the commercial exigencies and unique characteristics of the construction sector.
Resumo:
This commentary raises general questions about the parsimony and generalizability of the SIMS model, before interrogating the specific roles that the amygdala and eye contact play in it. Additionally, this situates the SIMS model alongside another model of facial expression processing, with a view to incorporating individual differences in emotion perception.
Resumo:
The Private Finance Initiative (PFI) is frequently portrayed as a vehicle for change for the UK construction sector. Significant change in the working practices of construction companies is predicted as new business models based on whole-life value creation emerge. This paper shifts the focus of discussion from projected ideals and possible developments to the current situation. More specifically, it focuses on the challenges that large firms participating in both PFI and traditional markets face. The analysis focuses on the relations between business units and on day-to-day challenges to greater long-term commitment, through life-service provision and increased integration between construction and service provision. The paper offers insights into the effects of PFI on construction practice and their implications for theorizing on organizational and strategic change. It suggests abandoning a simplistic model of the centralized, homogenous firm and instead capturing the dynamics of decentralized, large firms working in multiple markets on a variety of projects. This would assist in the provision of more realistic and fruitful models of how to realize the PFI vision.