136 resultados para Boneh-Boyen Signatures


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth's cusps are magnetic field features in the magnetosphere associated with regions through which plasma from the Sun can have direct access to the upper atmosphere. Recently, new ground-based observations, combined with in situ satellite measurements, have led the way in reinterpreting cusp signatures. These observations, combined with theoretical advances, have stimulated new interest in the solar wind-magnetosphere-ionosphere coupling chain. This coupling process is important because it causes both momentum and energy from the solar wind to enter into the near-Earth region. Here we describe the current ideas concerning the cusps and the supporting observational evidence which have evolved over the past 30 years. We include discussion on the plasma entry process, particle motion between the magnetopause and ionosphere, ground optical and radar measurements, and transient events. We also review the important questions that remain to be answered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An explanation of overlapping cusp ion injections is presented using the pulsating cusp model of the effects of magnetopause reconnection. It is shown that two populations of cusp ions, covering separated energy ranges, can be seen simultaneously by low- or mid-altitude satellites because of the combined effect of the acceleration and the straightening of newly-opened field lines as they evolve away from the reconnection site. Observations of such signatures, recently reported in data from the Viking and Freja satellites, are discussed in terms of pulsed and steady reconnection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown from flux transfer event (FTE) occurrence statistics, observed as a function of MLT by the ISEE satellites, that recent 2-dimensional analytic theories of the effects of pulsed Petschek reconnection predict FTEs to contribute between 50 and 200 kV to the total reconnection voltage when the magnetosheath field points southward. The upper limit (200 kV) allows the possibility that FTEs provide all the antisunward transport of open field lines into the tail lobe. This range is compared with the voltages associated with series of FTEs signatures, as inferred from ground-based observations, which are in the range 10–60 kV. We conclude that the contribution could sometimes be made by a series of single, large events; however, the voltage is often likely to be contributed by several FTEs at different MLT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Longitudinal flow bursts observed by the European Incoherent Scatter (EISCAT) radar, in association with dayside auroral transients observed from Svalbard, have been interpreted as resulting from pulses of enhanced reconnection at the dayside magnetopause. However, an alternative model has recently been proposed for a steady rate of magnetopause reconnection, in which the bursts of longitudinal flow are due to increases in the field line curvature force, associated with the By component of the magnetosheath field. We here evaluate these two models, using observations on January 20, 1990, by EISCAT and a 630-nm all-sky camera at Ny Ålesund. For both models, we predict the behavior of both the dayside flows and the 630-nm emissions on newly opened field lines. It is shown that the signatures of steady reconnection and magnetosheath By changes could possibly resemble the observed 630-nm auroral events, but only for certain locations of the observing site, relative to the ionospheric projection of the reconnection X line: however, in such cases, the flow bursts would be seen between the 630-nm transients and not within them. On the other hand, the model of reconnection rate pulses predicts that the flows will be enhanced within each 630-nm transient auroral event. The observations on January 20, 1990, are shown to be consistent with the model of enhanced reconnection rate pulses over a background level and inconsistent with the effects of periodic enhancements of the magnitude of the magnetosheath By component. We estimate that the reconnection rate within the pulses would have to be at least an order of magnitude larger than the background level between the pulses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A discussion is given of plasma flows in the dawn and nightside high-latitude ionospheric regions during substorms occurring on a contracted auroral oval, as observed using the EISCAT CP-4-A experiment. Supporting data from the PACE radar, Greenland magnetometer chain, SAMNET magnetometers and geostationary satellites are compared to the EISCAT observations. On 4 October 1989 a weak substorm with initial expansion phase onset signatures at 0030 UT, resulted in the convection reversal boundary observed by EISCAT (at \sim0415 MLT) contracting rapidly poleward, causing a band of elevated ionospheric ion temperatures and a localised plasma density depletion. This polar cap contraction event is shown to be associated with various substorm signatures; Pi2 pulsations at mid-latitudes, magnetic bays in the midnight sector and particle injections at geosynchronous orbit. A similar event was observed on the following day around 0230 UT (\sim0515 MLT) with the unusual and significant difference that two convection reversals were observed, both contracting poleward. We show that this feature is not an ionospheric signature of two active reconnection neutral lines as predicted by the near-Earth neutral model before the plasmoid is “pinched off”, and present two alternative explanations in terms of (1) viscous and lobe circulation cells and (2) polar cap contraction during northward IMF. The voltage associated with the anti-sunward flow between the reversals reaches a maximum of 13 kV during the substorm expansion phase. This suggests it to be associated with the polar cap contraction and caused by the reconnection of open flux in the geomagnetic tail which has mimicked “viscous-like” momentum transfer across the magnetopause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The altitude from which transient 630-nm (“red line”) light is emitted in transient dayside auroral breakup events is discussed. Theoretically, the emissions should normally originate from approximately 250 to 550 km. Because the luminosity in dayside breakup events moves in a way that is consistent with newly opened field lines, they have been interpreted as the ionospheric signatures of transient reconnection at the dayside magnetopause. For this model the importance of these events for convection can be assessed from the rate of change of their area. The area derived from analysis of images from an all-sky camera and meridian scans from a photometer, however, depends on the square of the assumed emission altitude. From field line mapping, it is shown for both a westward and an eastward moving event, that the main 557.7-nm emission comes from the edge of the 630 nm transient, where a flux transfer event model would place the upward field-aligned current (on the poleward and equatorward edge, respectively). The observing geometry for the two cases presented is such that this is true, irrespective of the 630-nm emission altitude. From comparisons with the European incoherent scatter radar data for the westward (interplanetary magnetic field By > 0) event on January 12, 1988, the 630-nm emission appears to emanate from an altitude of 250 km, and to be accompanied by some 557.7-nm “green-line” emission. However, for a large, eastward moving event observed on January 9, 1989, there is evidence that the emission altitude is considerably greater and, in this case, the only 557.7-nm emission is that on the equatorward edge of the event, consistent with a higher altitude 630-nm excitation source. Assuming an emission altitude of 250 km for this event yields a reconnection voltage of >50 kV during the reconnection burst but a contribution to the convection voltage of >15 kV. However, from the motion of the event we infer that the luminosity peaks at an altitude in the range of 400 and 500 km, and for the top of this range the reconnection and average convection voltages would be increased to >200 kV and >60 kV, respectively. (These are all minimum estimates because the event extends in longitude beyond the field-of-view of the camera). Hence the higher-emission altitude has a highly significant implication, namely that the reconnection bursts which cause the dayside breakup events could explain most of the voltage placed across the magnetosphere and polar cap by the solar wind flow. Analysis of the plasma density and temperatures during the event on January 9, 1989, predicts the required thermal excitation of significant 630-nm intensities at altitudes of 400-500 km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recurrence rate of flux transfer events (FTEs) observed near the dayside magnetopause is discussed. A survey of magnetopause observations by the ISEE satellites shows that the distribution of the intervals between FTE signatures has a mode value of 3 min, but is highly skewed, having upper and lower decile values of 1.5 min and 18.5 min, respectively. The mean value is found to be 8 min, consistent with previous surveys of magnetopause data. The recurrence of quasi-periodic events in the dayside auroral ionosphere is frequently used as evidence for an association with magnetopause FTEs, and the distribution of their repetition intervals should be matched to that presented here if such an association is to be confirmed. A survey of 1 year's 15-s data on the interplanetary magnetic field (IMF) suggests that the derived distribution could arise from fluctuations in the IMF Bz component, rather than from a natural oscillation frequency of the magnetosphere-ionosphere system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is presented which allows estimation of the variation of the rate of magnetic reconnection at the day side magnetopause. This is achieved using observations of the cusp particle precipitation made by low-altitude polar-orbiting spacecraft. In this paper we apply the technique to a previously published example of a cusp intersection by the DMSP F7 satellite. It is shown that the cusp signature in this case was produced by three separate bursts of reconnection which were of the order of 10 min apart, each lasting roughly 1 min. This is similar to the variation of reconnection rate which is required to explain typical flux transfer event signatures at the magnetopause.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low- and high-latitude boundary layers of the earth's magnetosphere [low-latitude boundary layer (LLBL) and mantle] play important roles in transferring momentum and energy from the solar wind to the magnetosphere-ionosphere system. Particle precipitation, field-aligned current, auroral emission, ionospheric ion drift and ground magnetic perturbations are among the low-altitude parameters that show signatures of various plasma processes in the LLBL and the magnetopause current layer. Magnetic merging events, Kelvin-Helmholtz waves, and pressure pulses excited by the variable solar wind/magnetosheath plasma are examples of boundary phenomena that may be coupled to the ionosphere via field-aligned currents. Optical auroral observation, by photometry and all-sky TV cameras, is a unique technique for investigating the spatial and temporal structure of the electron precipitation associated with such phenomena. However, the distinction between the different boundary layer plasma populations cannot in general be unambiguously determined by optics alone. Additional information, such as satellite observations of particle boundaries and field-aligned currents, is needed in order to identify the plasma source(s) and the magnetosphere-ionosphere coupling mode(s). Two categories of auroral activity/structure in the vicinity of the polar cusp are discussed in this paper, based on combined ground and satellite data. In one case, the quasi-periodic sequence of auroral events at the polar cap boundary involves accelerated electrons (< 1 keV) moving poleward (< 1 km s-1) and azimuthally along the persistent cusp/cleft arc poleward boundary with velocities (< 4 km s-1), comparable to the local ionospheric ion drift during periods of southward IMF. A critical question is whether or not the optical events signify a corresponding plasma flow across the open/closed field line boundary in such cases. Near-simultaneous observations of magnetopause flux transfer events (FTEs) and such optical/ion drift events are reported. The reverse pattern of motion of discrete auroral forms is observed during positive interplanetary magnetic field (IMF) B(Z), i.e. equatorward motion into the cusp/cleft background arc from the poleward edge. Combined satellite and ground-based information for the latter cases indicate a source mechanism, poleward of the cusp at the high-latitude magnetopause or plasma mantle, giving rise to strong momentum transfer and electron precipitation structures within a approximately 200 km-wide latitudinal zone at the cusp/cleft poleward boundary. The striking similarities of auroral electrodynamics in the cleft/mantle region during northward and southward IMF indicate that a qualitatively similar solar wind-magnetosphere coupling mode is operating. It is suggested that, in both cases, the discrete auroral forms represent temporal/spatial structure of larger-scale convection over the polar magnetosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, the cusp has been described in terms of a time-stationary feature of the magnetosphere which allows access of magnetosheath-like plasma to low altitudes. Statistical surveys of data from low-altitude spacecraft have shown the average characteristics and position of the cusp. Recently, however, it has been suggested that the ionospheric footprint of flux transfer events (FTEs) may be identified as variations of the “cusp” on timescales of a few minutes. In this model, the cusp can vary in form between a steady-state feature in one limit and a series of discrete ionospheric FTE signatures in the other limit. If this time-dependent cusp scenario is correct, then the signatures of the transient reconnection events must be able, on average, to reproduce the statistical cusp occurrence previously determined from the satellite observations. In this paper, we predict the precipitation signatures which are associated with transient magnetopause reconnection, following recent observations of the dependence of dayside ionospheric convection on the orientation of the IMF. We then employ a simple model of the longitudinal motion of FTE signatures to show how such events can easily reproduce the local time distribution of cusp occurrence probabilities, as observed by low-altitude satellites. This is true even in the limit where the cusp is a series of discrete events. Furthermore, we investigate the existence of double cusp patches predicted by the simple model and show how these events may be identified in the data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed “flux transfer events” (FTEs), are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some “two-regime” observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurrence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence (albeit qualitative) in the case of magnetosheath FTEs, but this does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurrence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing (for inbound/outbound passes, respectively). This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magnetosheath field is northward: all crossings with magnetosphere FTEs and a northward field can be attributed to the field changing sense while the satellite was within the magnetosphere (but close enough to the magnetopause to detect an FTE). Allowance for the IMF variability also makes the occurrence frequency of magnetosphere FTEs during southward magnetosheath fields very similar to that observed for magnetosheath FTEs. Conversely, the probability of attaining the observed occurrence frequencies for the pressure pulse model is 10−14. In addition, it is argued that some magnetosheath FTEs should, for the pressure pulse model, have been observed for northward IMF: the probability that the number is as low as actually observed is estimated to be 10−10. It is concluded that although the pressure model can be invoked to qualitatively explain a large number of individual FTE observations, the observed occurrence statistics are in gross disagreement with this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conjunctive measurements made by the Dynamics Explorer 1 and 2 spacecraft on October 22, 1981, under conditions of southward IMF, suggest the existence of a cusp ion injection from a region at the magnetopause with a scale size of ∼ 1/2 to 1 R E . Current signatures observed by the LAPI and MAGB instruments on board DE-2 indicate the existence of a rotation in the magnetic field that is consistent with a filamentary current system. The observed current structure can be interpreted as the ionospheric signature of a flux transfer event (FTE). In addition to this large-scale current structure there exist three small-scale filamentary current pairs. These current pairs close locally and thus, if our interpretation of this event as an FTE is correct, represent the first reported observations of FTE interior structure at low-altitudes.