151 resultados para Bmd Size Correction
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
Property portfolio diversification takes many forms, most of which can be associated with asset size. In other words larger property portfolios are assumed to have greater diversification potential than small portfolios. In addition, since greater diversification is generally associated with lower risk it is assumed that larger property portfolios will also have reduced return variability compared with smaller portfolios. If large property portfolios can simply be regarded as scaled-up, better-diversified versions of small property portfolios, then the greater a portfolio’s asset size, the lower its risk. This suggests a negative relationship between asset size and risk. However, if large property portfolios are not simply scaled-up versions of small portfolios, the relationship between asset size and risk may be unclear. For instance, if large portfolios hold riskier assets or pursue more volatile investment strategies, it may be that a positive relationship between asset size and risk would be observed, even if large property portfolios are more diversified. This paper tests the empirical relationship between property portfolio size, diversification and risk, in Institutional portfolios in the UK, during the period from 1989 to 1999 to determine which of these two characterisations is more appropriate.
Resumo:
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.
Resumo:
A novel approach is presented for combining spatial and temporal detail from newly available TRMM-based data sets to derive hourly rainfall intensities at 1-km spatial resolution for hydrological modelling applications. Time series of rainfall intensities derived from 3-hourly 0.25° TRMM 3B42 data are merged with a 1-km gridded rainfall climatology based on TRMM 2B31 data to account for the sub-grid spatial distribution of rainfall intensities within coarse-scale 0.25° grid cells. The method is implemented for two dryland catchments in Tunisia and Senegal, and validated against gauge data. The outcomes of the validation show that the spatially disaggregated and intensity corrected TRMM time series more closely approximate ground-based measurements than non-corrected data. The method introduced here enables the generation of rainfall intensity time series with realistic temporal and spatial detail for dynamic modelling of runoff and infiltration processes that are especially important to water resource management in arid regions.
Resumo:
Housebuilding is frequently viewed as an industry full of small firms. However, large firms exist in many countries. Here, a comparative analysis is made of the housebuilding industries in Australia, Britain and the USA. Housebuilding output is found to be much higher in Australia and the USA than in Britain when measured on a per capita basis. At the same time, the degree of market concentration in Australia and the USA is relatively low but in Britain it is far greater, with a few firms having quite substantial market shares. Investigation of the size distribution of the top 100 or so firms ranked by output also shows that the decline in firm size from the largest downwards is more rapid in Britain than elsewhere. The exceptionalism of the British case is put down to two principal reasons. First, the close proximity of Britain’s regions enables housebuilders to diversify successfully across different markets. The gains from such diversification are best achieved by large firms, because they can gain scale benefits in any particular market segment. Second, land shortages induced by a restrictive planning system encourage firms to takeover each other as a quick and beneficial means of acquiring land. The institutional rules of planning also make it difficult for new entrants to come in at the bottom end of the size hierarchy. In this way, concentration grows and a handful of large producers emerge. These conditions do not hold in the other two countries, so their industries are less concentrated. Given the degree of rivalry between firms over land purchases and takeovers, it is difficult to envisage them behaving in a long-term collusive manner, so that competition in British housebuilding is probably not unduly compromised by the exceptional degree of firm concentration. Reforms to lower the restrictions, improve the slow responsiveness and reduce the uncertainties associated with British planning systems’ role in housing supply are likely to greatly improve the ability of new firms to enter housebuilding and all firms’ abilities to increase output in response to rising housing demand. Such reforms would also probably lower overall housebuilding firm concentration over time.
Resumo:
This paper investigates the potential benefits and limitations of equal and value-weighted diversification using as the example the UK institutional property market. To achieve this it uses the largest sample (392) of actual property returns that is currently available, over the period 1981 to 1996. To evaluate these issues two approaches are adopted; first, an analysis of the correlations within the sectors and regions and secondly simulations of property portfolios of increasing size constructed both naively and with value-weighting. Using these methods it is shown that the extent of possible risk reduction is limited because of the high positive correlations between assets in any portfolio, even when naively diversified. It is also shown that portfolios exhibit high levels of variability around the average risk, suggesting that previous work seriously understates the number of properties needed to achieve a satisfactory level of diversification. The results have implications for the development and maintenance of a property portfolio because they indicate that the achievable level of risk reduction depends upon the availability of assets, the weighting system used and the investor’s risk tolerance.
Resumo:
Despite a number of papers that discuss the advantages of increased size on risk levels in real estate portfolios there is remarkably little empirical evidence based on actual portfolios. The objective of this paper is to remedy this deficiency by examining the portfolio risk of a large sample of actual property data over the period 1981 to 1996. The results show that all that can be said is that portfolios of properties of a large size, on the average, tend to have lower risks than small sized portfolios. More importantly portfolios of a few properties can have very high or very low risk.
Resumo:
Pontryagin's maximum principle from optimal control theory is used to find the optimal allocation of energy between growth and reproduction when lifespan may be finite and the trade-off between growth and reproduction is linear. Analyses of the optimal allocation problem to date have generally yielded bang-bang solutions, i.e. determinate growth: life-histories in which growth is followed by reproduction, with no intermediate phase of simultaneous reproduction and growth. Here we show that an intermediate strategy (indeterminate growth) can be selected for if the rates of production and mortality either both increase or both decrease with increasing body size, this arises as a singular solution to the problem. Our conclusion is that indeterminate growth is optimal in more cases than was previously realized. The relevance of our results to natural situations is discussed.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Buffalo milk contains (40–60 %) more protein, fat and calcium than cows’ milk. These constituents were enhanced by ultrafiltration (UF) of cows’ milk to give a product with similar levels to those found in the buffalo milk. Mozzarella-type curd was made from buffalo, cows’ and UF cows’ milk to compare the overall curd yield and quality. The curd yield on both dry and wet weight basis, curd moisture content and overall curd fat retention were found to be higher in the UF cows’ milk than for either the buffalo or the cows’ milk preparations. The minimum whey fat losses occurred in the UF cows’ curd when compared to the cows’ and the buffalo curd. The whey protein losses were found to be higher in the UF cows’ curd than those for the buffalo and the cows’ curds. The total mineral content of the curd was also higher in the UF cows’ milk than that found in either the buffalo or the cows’ milk. SEM micrographs showed that casein micelles sizes were different in the two different types of milk. Casein micelles were also observed to be deformed in the UF cows’ milk samples. UF cows’ milk contained higher amounts of both the αs1- and αs2-casein moieties than either the buffalo or the cows’ milk. Buffalo milk was found to contain a higher concentration of β-casein than either the UF cows’ or untreated cows’ milk samples. Gel strength was found to be higher in the resultant buffalo curd than for curds made from either native cows’ milk or those made from UF cows’ milk. The mineral distribution was also different in the three different types of bovine milk, measured by energy-dispersive X-ray (EDX) analysis. Differences in the curd quality observed between the buffalo and the cows’ milk appear to result from the differences in casein composition and overall micelle structure, rather than casein concentration alone.