134 resultados para Altitude range


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incomplete understanding of three aspects of the climate system—equilibrium climate sensitivity, rate of ocean heat uptake and historical aerosol forcing—and the physical processes underlying them lead to uncertainties in our assessment of the global-mean temperature evolution in the twenty-first century1,2. Explorations of these uncertainties have so far relied on scaling approaches3,4, large ensembles of simplified climate models1,2, or small ensembles of complex coupled atmosphere–ocean general circulation models5,6 which under-represent uncertainties in key climate system properties derived from independent sources7–9. Here we present results from a multi-thousand-member perturbed-physics ensemble of transient coupled atmosphere–ocean general circulation model simulations. We find that model versions that reproduce observed surface temperature changes over the past 50 years show global-mean temperature increases of 1.4–3 K by 2050, relative to 1961–1990, under a mid-range forcing scenario. This range of warming is broadly consistent with the expert assessment provided by the Intergovernmental Panel on Climate Change Fourth Assessment Report10, but extends towards larger warming than observed in ensemblesof-opportunity5 typically used for climate impact assessments. From our simulations, we conclude that warming by the middle of the twenty-first century that is stronger than earlier estimates is consistent with recent observed temperature changes and a mid-range ‘no mitigation’ scenario for greenhouse-gas emissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wall plaster sequences from the Neolithic town of Çatalhöyük have been analysed and compared to three types of natural sediment found in the vicinity of the site, using a range of analytical techniques. Block samples containing the plaster sequences were removed from the walls of several different buildings on the East Mound. Sub-samples were examined by IR spectroscopy, X-ray diffraction and X-ray fluorescence to determine the overall mineralogical and elemental composition, whilst thin sections were studied using optical polarising microscopy, IR Microscopy and Environmental Scanning Electron Microscopy with Energy Dispersive X-ray analysis. The results of this study have shown that there are two types of wall plaster found in the sequences and that the sediments used to produce these were obtained from at least two distinct sources. In particular, the presence of clay, calcite and magnesian calcite in the foundation plasters suggested that these were prepared predominantly from a marl source. On the other hand, the finishing plasters were found to contain dolomite with a small amount of clay and no calcite, revealing that softlime was used in their preparation. Whilst marl is located directly below and around Çatalhöyük, the nearest source of softlime is 6.5 km away, an indication that the latter was important to the Neolithic people, possibly due to the whiter colour (5Y 8/1) of this sediment. Furthermore, the same two plaster types were found on each wall of Building 49, the main building studied in this research, and in all five buildings investigated, suggesting that the use of these sources was an established practice for the inhabitants of several different households across the site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the interval between 8:00-9:30 on 14 January 2001, the four Cluster spacecraft were moving from the central magnetospheric lobe, through the dusk sector mantle, on their way towards intersecting the magnetopause near 15:00 MLT and 15:00 UT. Throughout this interval, the EIS-CAT Svalbard Radar (ESR) at Longyearbyen observed a series of poleward-moving transient events of enhanced F-region plasma concentration ("polar cap patches"), with a repetition period of the order of 10 min. Allowing for the estimated solar wind propagation delay of 75 ( 5) min, the interplanetary magnetic field (IMF) had a southward component during most of the interval. The magnetic footprint of the Cluster spacecraft, mapped to the ionosphere using the Tsyganenko T96 model (with input conditions prevailing during this event), was to the east of the ESR beams. Around 09:05 UT, the DMSP-F12 satellite flew over the ESR and showed a sawtooth cusp ion dispersion signature that also extended into the electrons on the equatorward edge of the cusp, revealing a pulsed magnetopause reconnection. The consequent enhanced ionospheric flow events were imaged by the SuperDARN HF backscatter radars. The average convection patterns (derived using the AMIE technique on data from the magnetometers, the EISCAT and SuperDARN radars, and the DMSP satellites) show that the associated poleward-moving events also convected over the predicted footprint of the Cluster spacecraft. Cluster observed enhancements in the fluxes of both electrons and ions. These events were found to be essentially identical at all four spacecraft, indicating that they had a much larger spatial scale than the satellite separation of the order of 600 km. Some of the events show a correspondence between the lowest energy magnetosheath electrons detected by the PEACE instrument on Cluster (10-20 eV) and the topside ionospheric enhancements seen by the ESR (at 400-700 km). We suggest that a potential barrier at the magnetopause, which prevents the lowest energy electrons from entering the magnetosphere, is reduced when and where the boundary-normal magnetic field is enhanced and that the observed polar cap patches are produced by the consequent enhanced precipitation of the lowest energy electrons, making them and the low energy electron precipitation fossil remnants of the magnetopause reconnection rate pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of a cusp ion step, observed by the Defense Meteorological Satellite Program (DMSP) F10 spacecraft, between two poleward moving events of enhanced ionospheric electron temperature, observed by the European Incoherent Scatter (EISCAT) radar. From the ions detected by the satellite, the variation of the reconnection rate is computed for assumed distances along the open-closed field line separatrix from the satellite to the X line, do. Comparison with the onset times of the associated ionospheric events allows this distance to be estimated, but with an uncertainty due to the determination of the low-energy cutoff of the ion velocity distribution function, ƒ(ν). Nevertheless, the reconnection site is shown to be on the dayside magnetopause, consistent with the reconnection model of the cusp during southward interplanetary magnetic field (IMF). Analysis of the time series of distribution function at constant energies, ƒ(ts), shows that the best estimate of the distance do is 14.5±2 RE. This is consistent with various magnetopause observations of the signatures of reconnection for southward IMF. The ion precipitation is used to reconstruct the field-parallel part of the Cowley D ion distribution function injected into the open low-latitude boundary layer in the vicinity of the X line. From this reconstruction, the field-aligned component of the magnetosheath flow is found to be only −55±65 km s−1 near the X line, which means either that the reconnection X line is near the stagnation region at the nose of the magnetosphere, or that it is closely aligned with the magnetosheath flow streamline which is orthogonal to the magnetosheath field, or both. In addition, the sheath Alfvén speed at the X line is found to be 220±45 km s−1, and the speed with which newly opened field lines are ejected from the X line is 165±30 km s−1. We show that the inferred magnetic field, plasma density, and temperature of the sheath near the X line are consistent with a near-subsolar reconnection site and confirm that the magnetosheath field makes a large angle (>58°) with the X line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for estimating both the Alfvén speed and the field-aligned flow of the magnetosheath at the magnetopause reconnection site is presented. The method employs low-altitude cusp ion observations and requires the identification of a feature in the cusp ion spectra near the low-energy cutoff which will often be present for a low-latitude dayside reconnection site. The appearance of these features in data of limited temporal, energy, and pitch angle resolution is illustrated by using model calculations of cusp ion distribution functions. These are based on the theory of ion acceleration at the dayside magnetopause and allow for the effects on the spectrum of flight times of ions precipitating down newly opened field lines. In addition, the variation of the reconnection rate can be evaluated, and comparison with ground-based observations of the corresponding sequence of transient events allows the field-aligned distance from the ionosphere to the reconnection site to be estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the characteristics of magnetosheath plasma precipitation in the “cusp” ionosphere for when the reconnection at the dayside magnetopause takes place only in a series of pulses. It is shown that even in this special case, the low-altitude cusp precipitation is continuous, unless the intervals between the pulses are longer than observed intervals between magnetopause flux transfer event (FTE) signatures. We use FTE observation statistics to predict, for this case of entirely pulsed reconnection, the occurrence frequency, the distribution of latitudinal widths, and the number of ion dispersion steps of the cusp precipitation for a variety of locations of the reconnection site and a range of values of the local de-Hoffman Teller velocity. It is found that the cusp occurrence frequency is comparable with observed values for virtually all possible locations of the reconnection site. The distribution of cusp width is also comparable with observations and is shown to be largely dependent on the distribution of the mean reconnection rate, but pulsing the reconnection does very slightly increase the width of that distribution compared with the steady state case. We conclude that neither cusp occurrence probability nor width can be used to evaluate the relative occurrence of reconnection behaviors that are entirely pulsed, pulsed but continuous and quasi-steady. We show that the best test of the relative frequency of these three types of reconnection is to survey the distribution of steps in the cusp ion dispersion characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analysis of a “quasi-steady” cusp ion dispersion signature observed at low altitudes. We reconstruct the field-parallel part of the Cowley-D ion distribution function, injected into the open LLBL in the vicinity of the reconnection X-line. From this we find the field-parallel magnetosheath flow at the X-line was only 20 ± 60 km s−1, placing the reconnection site close to the flow streamline which is perpendicular to the magnetosheath field. Using interplanetary data and assuming the subsolar magnetopause is in pressure balance, we derive a wealth of information about the X-line, including: the density, flow, magnetic field and Alfvén speed of the magnetosheath; the magnetic shear across the X-line; the de-Hoffman Teller speed with which field lines emerge from the X-line; the magnetospheric field; and the ion transmission factor across the magnetopause. The results indicate that some heating takes place near the X-line as the ions cross the magnetopause, and that sheath densities may be reduced in a plasma depletion layer. We also compute the reconnection rate. Despite its quasi-steady appearance on an ion spectrogram, this cusp is found to reveal a large pulse of enhanced reconnection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present predictions of the signatures of magnetosheath particle precipitation (in the regions classified as open low-latitude boundary layer, cusp, mantle and polar cap) for periods when the interplanetary magnetic field has a southward component. These are made using the “pulsating cusp” model of the effects of time-varying magnetic reconnection at the dayside magnetopause. Predictions are made for both low-altitude satellites in the topside ionosphere and for midaltitude spacecraft in the magnetosphere. Low-altitude cusp signatures, which show a continuous ion dispersion signature, reveal "quasi-steady reconnection" (one limit of the pulsating cusp model), which persists for a period of at least 10 min. We estimate that “quasi-steady” in this context corresponds to fluctuations in the reconnection rate of a factor of 2 or less. The other limit of the pulsating cusp model explains the instantaneous jumps in the precipitating ion spectrum that have been observed at low altitudes. Such jumps are produced by isolated pulses of reconnection: that is, they are separated by intervals when the reconnection rate is zero. These also generate convecting patches on the magnetopause in which the field lines thread the boundary via a rotational discontinuity separated by more extensive regions of tangential discontinuity. Predictions of the corresponding ion precipitation signatures seen by midaltitude spacecraft are presented. We resolve the apparent contradiction between estimates of the width of the injection region from midaltitude data and the concept of continuous entry of solar wind plasma along open field lines. In addition, we reevaluate the use of pitch angle-energy dispersion to estimate the injection distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usual interpretation of a flux transfer event (FTE) at the magnetopause, in terms of time-dependent and possibly patchy reconnection, demands that it generate an ionospheric signature. Recent ground-based observations have revealed that auroral transients in the cusp/cleft region have all the characteristics required of FTE effects. However, signatures in the major available dataset, namely that from low-altitude polar-orbiting satellites, have not yet been identified. In this paper, we consider a cusp pass of the DE-2 spacecraft during strongly southward IMF. The particle detectors show magnetosheath ion injection signatures. However, the satellite motion and convection are opposed, and we discuss how the observed falling energy dispersion of the precipitating ions can have arisen from a static, moving or growing source. The spatial scale of the source is typical of an FTE. A simple model of the ionospheric signature of an FTE reproduces the observed electric and magnetic field perturbations. Precipitating electrons of peak energy ∼100eV are found to lie on the predicted boundary of the newly-opened tube, very similar to those found on the edges of FTEs at the magnetopause. The injected ions are within this boundary and their dispersion is consistent with its growth as reconnection proceeds. The reconnection potential and the potential of the induced ionospheric motion are found to be the same (≃25kV). The scanning imager on DE-1 shows a localised transient auroral feature around DE-2 at this time, similar to the recent optical/radar observations of FTEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous observations in the high-latitude ionosphere and in the near-Earth interplanetary medium have revealed the control exerted by the interplanetary magnetic field and the solar wind flow on field-perpendicular convection of plasma in both the ionosphere and the magnetosphere. Previous studies, using statistical surveys of data from both low-altitude polar-orbiting satellites and ground-based radars and magnetometers, have established that magnetic reconnection at the dayside magnetopause is the dominant driving mechanism for convection. More recently, ground-based data and global auroral images of higher temporal resolution have been obtained and used to study the response of the ionospheric flows to changes in the interplanetary medium. These observations show that ionospheric convection responds rapidly (within a few minutes) to both increases and decreases in the reconnection rate over a range of spatial scales, as well as revealing transient enhancements which are also thought to be related to magnetopause phenomena. Such results emphasize the potential of ground-based radars and other remote-sensing instruments for studies of the Earth's interaction with the interplanetary medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The retarding ion mass spectrometer on the Dynamics Explorer 1 spacecraft has generated a unique data set which documents, among other things, the occurrence of non-Maxwellian superthermal features in the auroral topside ionosphere distribution functions. In this paper, we provide a representative sampling of the observed features and their spatial morphology as observed at altitudes in the range from a few thousand kilometers to a few earth radii. At lower altitudes, these features appear at auroral latitudes separating regions of polar cap and subauroral light ion polar wind. The most common signature is the appearance of an upgoing energetic tail having conical lobes representing significant ion heat and number flux in all species, including O+. Transverse ion heating below the observation point at several thousand kilometers is clearly associated with O+ outflows. In some events observed, transverse acceleration apparently involves nearly the entire thermal plasma, the distribution function becomes highly anisotropic with T⊥ > T∥, and may actually develop a minimum at zero velocity, i.e., become a torus having as its axis the local magnetic field direction. At higher altitudes, the localized dayside source region appears as a field aligned flow which is dispersed tailward across the polar cap according to parallel velocity by antisunward convective flow, so that upflowing low energy O+ ions appear well within the polar cap region. While this flow can appear beamlike in a given location, the energy dispersion observed implies a very broad energy distribution at the source, extending from a few tenths of an eV to in excess of 50 eV. On the nightside, upgoing ion beams are found to be latitudinally bounded by regions of ion conics whose half angles increase with increasing separation from the beam region, indicating low altitude transverse acceleration in immediate proximity to, and below, the parallel acceleration region. These observations reveal a clear distinction between classical polar wind ion outflow and O+ enhanced superthermal flows, and confirm the importance of low altitude transverse acceleration in ionospheric plasma transport, as suggested by previous observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topside ionospheric profiles are used to study the upward field-aligned flow of thermal O+ at high latitudes. On the majority of the field lines outside the plasmasphere, the mean flux is approximately equal to the mean polar wind measured by spacecraft at greater altitudes. This is consistent with the theory of thermal light ion escape supported, via charge exchange, by upward O+ flow at lower heights. Events of larger O+ flow are detected at auroral latitudes and their occurrence is found to agree with that of transversely accelerated ions within the topside ionosphere and the magnetosphere. The effects of low altitude heating of O+ by oxygen cyclotron waves, driven by downward field-aligned currents, are considered as a possible common cause of these two types of event.