139 resultados para Aggregate uncertainty
Resumo:
This paper examines the cyclical regularities of macroeconomic, financial and property market aggregates in relation to the property stock price cycle in the UK. The Hodrick Prescott filter is employed to fit a long-term trend to the raw data, and to derive the short-term cycles of each series. It is found that the cycles of consumer expenditure, total consumption per capita, the dividend yield and the long-term bond yield are moderately correlated, and mainly coincident, with the property price cycle. There is also evidence that the nominal and real Treasury Bill rates and the interest rate spread lead this cycle by one or two quarters, and therefore that these series can be considered leading indicators of property stock prices. This study recommends that macroeconomic and financial variables can provide useful information to explain and potentially to forecast movements of property-backed stock returns in the UK.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
We compare and contrast the accuracy and uncertainty in forecasts of rents with those for a variety of macroeconomic series. The results show that in general forecasters tend to be marginally more accurate in the case of macro-economic series than with rents. In common across all of the series, forecasts tend to be smoothed with forecasters under-estimating performance during economic booms, and vice-versa in recessions We find that property forecasts are affected by economic uncertainty, as measured by disagreement across the macro-forecasters. Increased uncertainty leads to increased dispersion in the rental forecasts and a reduction in forecast accuracy.
Resumo:
Future changes in the stratospheric circulation could have an important impact on Northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess Northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project – phase 5 (CMIP5) multi-model ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification and the stratospheric wind change on SLP. We find that the inter-model spread in stratospheric wind change contributes substantially to the inter-model spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.
Resumo:
The evidence for anthropogenic climate change continues to strengthen, and concerns about severe weather events are increasing. As a result, scientific interest is rapidly shifting from detection and attribution of global climate change to prediction of its impacts at the regional scale. However, nearly everything we have any confidence in when it comes to climate change is related to global patterns of surface temperature, which are primarily controlled by thermodynamics. In contrast, we have much less confidence in atmospheric circulation aspects of climate change, which are primarily controlled by dynamics and exert a strong control on regional climate. Model projections of circulation-related fields, including precipitation, show a wide range of possible outcomes, even on centennial timescales. Sources of uncertainty include low-frequency chaotic variability and the sensitivity to model error of the circulation response to climate forcing. As the circulation response to external forcing appears to project strongly onto existing patterns of variability, knowledge of errors in the dynamics of variability may provide some constraints on model projections. Nevertheless, higher scientific confidence in circulation-related aspects of climate change will be difficult to obtain. For effective decision-making, it is necessary to move to a more explicitly probabilistic, risk-based approach.
Resumo:
We apply a new parameterisation of the Greenland ice sheet (GrIS) feedback between surface mass balance (SMB: the sum of surface accumulation and surface ablation) and surface elevation in the MAR regional climate model (Edwards et al., 2014) to projections of future climate change using five ice sheet models (ISMs). The MAR (Modèle Atmosphérique Régional: Fettweis, 2007) climate projections are for 2000–2199, forced by the ECHAM5 and HadCM3 global climate models (GCMs) under the SRES A1B emissions scenario. The additional sea level contribution due to the SMB– elevation feedback averaged over five ISM projections for ECHAM5 and three for HadCM3 is 4.3% (best estimate; 95% credibility interval 1.8–6.9 %) at 2100, and 9.6% (best estimate; 95% credibility interval 3.6–16.0 %) at 2200. In all results the elevation feedback is significantly positive, amplifying the GrIS sea level contribution relative to the MAR projections in which the ice sheet topography is fixed: the lower bounds of our 95% credibility intervals (CIs) for sea level contributions are larger than the “no feedback” case for all ISMs and GCMs. Our method is novel in sea level projections because we propagate three types of modelling uncertainty – GCM and ISM structural uncertainties, and elevation feedback parameterisation uncertainty – along the causal chain, from SRES scenario to sea level, within a coherent experimental design and statistical framework. The relative contributions to uncertainty depend on the timescale of interest. At 2100, the GCM uncertainty is largest, but by 2200 both the ISM and parameterisation uncertainties are larger. We also perform a perturbed parameter ensemble with one ISM to estimate the shape of the projected sea level probability distribution; our results indicate that the probability density is slightly skewed towards higher sea level contributions.
Resumo:
In the Eastern Cape Province of South Africa, chronic economic uncertainty has seen social relations stretched to breaking point. Informants speak of a 'war between men and women'. While grinding poverty, death in the shape of the 'axe' (HIV/AIDS) and suspicion stalk the land, and the project of building the umzi (homestead) falters, hope for the future and with it, trust between people, leaches away. One response to such uncertainty is a turn to ritual. Through a nearly relentless schedule of ritual activity which invokes the ancestors and the Christian deity in various forms, Xhosa people attempt to dam up trust, secure ongoing investment in the rural homestead and sustain ties of reciprocity both among rural people and between them and their urban kin. It is also through the staging of these rituals that women, acting together and in support of each other, are increasingly assertive – often in the face of a violent, rearguard opposition from men - in their efforts to exercise agency over the differentiated, fragmented and fragile social and economic relationships within their homesteads and across their villages.
Resumo:
The Sustainable Value approach integrates the efficiency with regard to environmental, social and economic resources into a monetary indicator. It gained significant popularity as evidenced by diverse applications at the corporate level. However, its introduction as a measure adhering to the strong sustainability paradigm sparked an ardent debate. This study explores its validity as a macroeconomic strong sustainability measure by applying the Sustainable Value approach to the EU-15 countries. Concretely, we assessed environmental, social and economic resources in combination with the GDP for all EU-15 countries from 1995 to 2006 for three benchmark alternatives. The results show that several countries manage to adequately delink resource use from GDP growth. Furthermore, the remarkable difference in outcome between the national and EU-15 benchmark indicates a possible inefficiency of the current allocation of national resource ceilings imposed by the European institutions. Additionally, by using an effects model we argue that the service degree of the economy and governmental expenditures on social protection and research and development are important determinants of overall resource efficiency. Finally, we sketch out three necessary conditions to link the Sustainable Value approach to the strong sustainability paradigm.
Resumo:
Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.
Resumo:
In the last decade, the growth of local, site-specific weather forecasts delivered by mobile phone or website represents arguably the fastest change in forecast consumption since the beginning of Television weather forecasts 60 years ago. In this study, a street-interception survey of 274 members of the public a clear first preference for narrow weather forecasts above traditional broad weather forecasts is shown for the first time, with a clear bias towards this preference for users under 40. The impact of this change on the understanding of forecast probability and intensity information is explored. While the correct interpretation of the statement ‘There is a 30% chance of rain tomorrow’ is still low in the cohort, in common with previous studies, a clear impact of age and educational attainment on understanding is shown, with those under 40 and educated to degree level or above more likely to correctly interpret it. The interpretation of rainfall intensity descriptors (‘Light’, ‘Moderate’, ‘Heavy’) by the cohort is shown to be significantly different to official and expert assessment of the same descriptors and to have large variance amongst the cohort. However, despite these key uncertainties, members of the cohort generally seem to make appropriate decisions about rainfall forecasts. There is some evidence that the decisions made are different depending on the communication format used, and the cohort expressed a clear preference for tabular over graphical weather forecast presentation.
Resumo:
The quantification of uncertainty is an increasingly popular topic, with clear importance for climate change policy. However, uncertainty assessments are open to a range of interpretations, each of which may lead to a different policy recommendation. In the EQUIP project researchers from the UK climate modelling, statistical modelling, and impacts communities worked together on ‘end-to-end’ uncertainty assessments of climate change and its impacts. Here, we use an experiment in peer review amongst project members to assess variation in the assessment of uncertainties between EQUIP researchers. We find overall agreement on key sources of uncertainty but a large variation in the assessment of the methods used for uncertainty assessment. Results show that communication aimed at specialists makes the methods used harder to assess. There is also evidence of individual bias, which is partially attributable to disciplinary backgrounds. However, varying views on the methods used to quantify uncertainty did not preclude consensus on the consequential results produced using those methods. Based on our analysis, we make recommendations for developing and presenting statements on climate and its impacts. These include the use of a common uncertainty reporting format in order to make assumptions clear; presentation of results in terms of processes and trade-offs rather than only numerical ranges; and reporting multiple assessments of uncertainty in order to elucidate a more complete picture of impacts and their uncertainties. This in turn implies research should be done by teams of people with a range of backgrounds and time for interaction and discussion, with fewer but more comprehensive outputs in which the range of opinions is recorded.
Resumo:
This paper is intended both as a contribution to the conceptual work on process in economic thought and as an attempt to connect a non-institutionalist, non-evolutionary thinker to it. The paper has two principal objectives: (i) to delineate a broad, philosophically grounded conception of what an economic process theory (EPT) is; and (ii) to locate the contributions of George Shackle within this broad conception of EPT. In pursuing these two objectives, I hope to draw out the originality and significance of Shackle’s economics with a particular emphasis on what he adds to process conceptions developed within other heterodox traditions such as institutional and evolutionary economics. I will also highlight some of the perceived limitations of Shackle’s approach and link them to the limitations of process philosophy.
Resumo:
The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. Weather forecasts using multiple NWPs from various weather centres implemented on catchment hydrology can provide significantly improved early flood warning. The availability of global ensemble weather prediction systems through the ‘THORPEX Interactive Grand Global Ensemble’ (TIGGE) offers a new opportunity for the development of state-of-the-art early flood forecasting systems. This paper presents a case study using the TIGGE database for flood warning on a meso-scale catchment (4062 km2) located in the Midlands region of England. For the first time, a research attempt is made to set up a coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts. A probabilistic discharge and flood inundation forecast is provided as the end product to study the potential benefits of using the TIGGE database. The study shows that precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial precipitation variability on such a comparatively small catchment, which indicates need to improve NWPs resolution and/or disaggregating techniques to narrow down the spatial gap between meteorology and hydrology. The spread of discharge forecasts varies from centre to centre, but it is generally large and implies a significant level of uncertainties. Nevertheless, the results show the TIGGE database is a promising tool to forecast flood inundation, comparable with that driven by raingauge observation.
Resumo:
This paper investigates the challenge of representing structural differences in river channel cross-section geometry for regional to global scale river hydraulic models and the effect this can have on simulations of wave dynamics. Classically, channel geometry is defined using data, yet at larger scales the necessary information and model structures do not exist to take this approach. We therefore propose a fundamentally different approach where the structural uncertainty in channel geometry is represented using a simple parameterization, which could then be estimated through calibration or data assimilation. This paper first outlines the development of a computationally efficient numerical scheme to represent generalised channel shapes using a single parameter, which is then validated using a simple straight channel test case and shown to predict wetted perimeter to within 2% for the channels tested. An application to the River Severn, UK is also presented, along with an analysis of model sensitivity to channel shape, depth and friction. The channel shape parameter was shown to improve model simulations of river level, particularly for more physically plausible channel roughness and depth parameter ranges. Calibrating channel Manning’s coefficient in a rectangular channel provided similar water level simulation accuracy in terms of Nash-Sutcliffe efficiency to a model where friction and shape or depth were calibrated. However, the calibrated Manning coefficient in the rectangular channel model was ~2/3 greater than the likely physically realistic value for this reach and this erroneously slowed wave propagation times through the reach by several hours. Therefore, for large scale models applied in data sparse areas, calibrating channel depth and/or shape may be preferable to assuming a rectangular geometry and calibrating friction alone.
Resumo:
In this paper an equation is derived for the mean backscatter cross section of an ensemble of snowflakes at centimeter and millimeter wavelengths. It uses the Rayleigh–Gans approximation, which has previously been found to be applicable at these wavelengths due to the low density of snow aggregates. Although the internal structure of an individual snowflake is random and unpredictable, the authors find from simulations of the aggregation process that their structure is “self-similar” and can be described by a power law. This enables an analytic expression to be derived for the backscatter cross section of an ensemble of particles as a function of their maximum dimension in the direction of propagation of the radiation, the volume of ice they contain, a variable describing their mean shape, and two variables describing the shape of the power spectrum. The exponent of the power law is found to be −. In the case of 1-cm snowflakes observed by a 3.2-mm-wavelength radar, the backscatter is 40–100 times larger than that of a homogeneous ice–air spheroid with the same mass, size, and aspect ratio.