199 resultados para wind farms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind generation’s contribution to meeting extreme peaks in electricity demand is a key concern for the integration of wind power. In Great Britain (GB), robustly assessing this contribution directly from power system data (i.e. metered wind-supply and electricity demand) is difficult as extreme peaks occur infrequently (by definition) and measurement records are both short and inhomogeneous. Atmospheric circulation-typing combined with meteorological reanalysis data is proposed as a means to address some of these difficulties, motivated by a case study of the extreme peak demand events in January 2010. A preliminary investigation of the physical and statistical properties of these circulation types suggests that they can be used to identify the conditions that are most likely to be associated with extreme peak demand events. Three broad cases are highlighted as requiring further investigation. The high-over-Britain anticyclone is found to be generally associated with very low winds but relatively moderate temperatures (and therefore moderate peak demands, somewhat in contrast to the classic low-wind cold snap that is sometimes apparent in the literature). In contrast, both longitudinally extended blocking over Scotland/Scandinavia and latitudinally extended troughs over western Europe appear to be more closely linked to the very cold GB temperatures (usually associated with extreme peak demands). In both of these latter situations, wind resource averaged across GB appears to be more moderate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to illustrate the impact of urban wind environments when assessing the availability of natural ventilation. A numerical study of urban airflow for a complex of five building blocks located at the University of Reading, UK is presented. The computational fluid dynamics software package ANSYS was used to simulate six typical cases of urban wind environments and the potential for natural ventilation assessed. The study highlights the impact of three typical architectural forms (street canyons, semi-enclosures and courtyards) on the local wind environment. Simulation results have also been compared with experimental data collected from six locations on the building complex. The study demonstrates that ventilation strategies formed using regional weather data, may have a propensity to over-estimate the potential for natural ventilation and cooling, due to the impact of urban form which creates a unique microclimate. Characteristics of urban wind flow patterns are presented as a guideline and can be used to assess the design and performance of natural or hybrid ventilation and the opportunity for passive cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a numerical study of urban air-flow for a group of five buildings that is located at the University of Reading in the United Kingdom. The airflow around these buildings has been simulated by using ANSYS CFD software package. In this study, the association between certain architectural forms: a street canyon, a semi-closure, and a courtyard-like space in a low-rise building complex, and the wind environment were investigated. The analysis of CFD results has provided detailed information on the wind patterns of these urban built forms. The numerical results have been compared with the experimental measurements within the building complex. The observed characteristics of urban wind pattern with respect to the built structures are presented as a guideline. This information is needed for the design and/or performance assessments of systems such as passive and low energy design approach, a natural or hybrid ventilation, and passive cooling. Also, the knowledge of urban wind patterns allows us to develop better design options for the application of renewable energy technologies within urban environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airflow through urban environments is one of the most important factors affecting human health, outdoor and indoor thermal comfort, air quality and the energy performance of buildings. This paper presents a study on the effects of wind induced airflows through urban built form using statistical analysis. The data employed in the analysis are from the year-long simultaneous field measurements conducted at the University of Reading campus in the United Kingdom. In this study, the association between typical architectural forms and the wind environment are investigated; such forms include: a street canyon, a semi-closure, a courtyard form and a relatively open space in a low-rise building complex. Measured data captures wind speed and wind direction at six representative locations and statistical analysis identifies key factors describing the effects of built form on the resulting airflows. Factor analysis of the measured data identified meteorological and architectural layout factors as key factors. The derivation of these factors and their variation with the studied built forms are presented in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Practically all extant work on flows over obstacle arrays, whether laboratory experiments or numerical modelling, is for cases where the oncoming wind is normal to salient faces of the obstacles. In the field, however, this is rarely the case. Here, simulations of flows at various directions over arrays of cubes representing typical urban canopy regions are presented and discussed. The computations are of both direct numerical simulation and large-eddy simulation type. Attention is concentrated on the differences in the mean flow within the canopy region arising from the different wind directions and the consequent effects on global properties such as the total surface drag, which can change very significantly—by up to a factor of three in some circumstances. It is shown that for a given Reynolds number the typical viscous forces are generally a rather larger fraction of the pressure forces (principally the drag) for non-normal than for normal wind directions and that, dependent on the surface morphology, the average flow direction deep within the canopy can be largely independent of the oncoming wind direction. Even for regular arrays of regular obstacles, a wind direction not normal to the obstacle faces can in general generate a lateral lift force (in the direction normal to the oncoming flow). The results demonstrate this and it is shown how computations in a finite domain with the oncoming flow generated by an appropriate forcing term (e.g. a pressure gradient) then lead inevitably to an oncoming wind direction aloft that is not aligned with the forcing term vector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest canopies are important components of the terrestrial carbon budget, which has motivated a worldwide effort, FLUXNET, to measure CO2 exchange between forests and the atmosphere. These measurements are difficult to interpret and to scale up to estimate exchange across a landscape. Here we review the effects of complex terrain on the mean flow, turbulence, and scalar exchange in canopy flows, as exemplified by adjustment to forest edges and hills, including the effects of stable stratification. We focus on the fundamental fluid mechanics, in which developments in theory, measurements, and modeling, particularly through large-eddy simulation, are identifying important processes and providing scaling arguments. These developments set the stage for the development of predictive models that can be used in combination with measurements to estimate exchange at the landscape scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the turbulent processes in the upper ocean boundary layer forced by a constant surface stress in the absence of the Coriolis force using large-eddy simulation. The boundary layer that develops has a two-layer structure, a well-mixed layer above a stratified shear layer. The depth of the mixed layer is approximately constant, whereas the depth of the shear layer increases with time. The turbulent momentum flux varies approximately linearly from the surface to the base of the shear layer. There is a maximum in the production of turbulence through shear at the base of the mixed layer. The magnitude of the shear production increases with time. The increase is mainly a result of the increase in the turbulent momentum flux at the base of the mixed layer due to the increase in the depth of the boundary layer. The length scale for the shear turbulence is the boundary layer depth. A simple scaling is proposed for the magnitude of the shear production that depends on the surface forcing and the average mixed layer current. The scaling can be interpreted in terms of the divergence of a mean kinetic energy flux. A simple bulk model of the boundary layer is developed to obtain equations describing the variation of the mixed layer and boundary layer depths with time. The model shows that the rate at which the boundary layer deepens does not depend on the stratification of the thermocline. The bulk model shows that the variation in the mixed layer depth is small as long as the surface buoyancy flux is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the UK, Campylobacter spp. and Lymphocytic Choriomeningitis Virus (LCMV), an Old World arenavirus, cause two zoonoses of concern that may be transmissible from rodents to humans and livestock. The aims of this preliminary investigation were to examine the occurrence of Campylobacter spp. and LCMV in Norway rats Rattus norvegicus on UK farms and to identify and characterise the Sequence Types of the Campylobacter isolates. Samples were collected from wild Norway rats and fresh Norway rat faeces. Multi Locus Sequence Typing (MLST) was performed on C. spp. isolates and samples were tested for arenavirus RNA by RT-PCR. Six C. spp. isolates were identified. One isolate was C. lari and five isolates were C. jejuni. Following MSLT profiling, three unique C. jejuni sequence types were identified. Two of which are novel and the third is typically associated with livestock and human infection. Nine positive results for LCMV were obtained giving an overall prevalence of 25% across four sites. This is higher than previously reported for this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses in surface winds to solar eclipses have an almost mystical status but are difficult to detect in observations because of their transient nature. High spatial resolution (approx. 1.5 km grid) meteorological models now provide a new technique for their investigation. Measurements from the southern UK meteorological network during the 11 August 1999 total solar eclipse are compared with a high-resolution model ignorant of the lunar shadow’s influence. Differences between the model output and measurements at the eclipse time show transient eclipse zone temperature decreases of up to 3 degrees C, which also depressed the day’s maximum temperature compared with the model prediction. Coherent responses in temperature, and wind speed and direction measurements are detected in the inland cloud-free region (from 51 to 52 degrees N and −2 to 0 degrees E). A mean regional wind speed decrease of 0.7 m s−1 during the maximum eclipse hour is apparent with a mean anticlockwise wind direction change of 17 degrees; no such changes occurred in the model output. Such regional circulation changes are consistent with Clayton’s 1901 cold-cored eclipse cyclone hypothesis, which may be related to the anecdotal ‘eclipse wind’.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.