102 resultados para time dependent thermodynamics
Resumo:
This review presents recent observations of high-latitude ionospheric plasma convection, obtained using the EISCAT radar in the 'Polar' experiment mode. The paper is divided into two main parts. Firstly, the delay in the response of dayside high-latitude flows to changes in the interplanetary magnetic field is discussed. The results show the importance for the excitation of dayside convection of the transfer of magnetic flux from the dayside into the tail lobe. Consequently, ionospheric convection should be thought of as the sum of two intrinsically time-dependent flow patterns. The first of these patterns is directly driven by solar wind-magnetosphere coupling, dominates ionospheric flows on the dayside, is associated with an expanding polar cap area and is the F-region flow equivalent of the DP-2 E-region current system. The second of the two patterns is driven by the release of energy stored in the geomagnetic tail, dominates ionospheric flows on the nightside, is associated with a contracting polar cap and is equivalent to the DP-1, or substorm, current system. In the second half of the paper, various transient flow bursts observed in the vicinity of the dayside cusp are studied. These radar data, combined with simultaneous optical observations of transient dayside aurorae, strongly suggest that momentum is transferred across the magnetopause and into the ionosphere in a series of bursts, each associated with voltages of 30-80 kV. Similarities between these bursts and flux transfer events observed at the magnetopause are discussed.
Resumo:
The generation of flow and current vortices in the dayside auroral ionosphere has been predicted for two processes ocurring at the dayside magnetopause. The first of these mechanisms is time-dependent magnetic reconnection, in “flux transfer events” (FTEs); the second is the action of solar wind dynamic pressure changes. The ionospheric flow signature of an FTE should be a twin vortex, with the mean flow velocity in the central region of the pattern equal to the velocity of the pattern as a whole. On the other hand, a pulse of enhanced or reduced dynamic pressure is also expected to produce a twin vortex, but with the central plasma flow being generally different in speed from, and almost orthogonal to, the motion of the whole pattern. In this paper, we make use of this distinction to discuss recent observations of vortical flow patterns in the dayside auroral ionosphere in terms of one or other of the proposed mechanisms. We conclude that some of the observations reported are consistent only with the predicted signature of FTEs. We then evaluate the dimensions of the open flux tubes required to explain some recent simultaneous radar and auroral observations and infer that they are typically 300 km in north–south extent but up to 2000 km in longitudinal extent (i.e., roughly 5 hours of MLT). Hence these observations suggest that recent theories of FTEs which invoke time-varying reconnection at an elongated neutral line may be correct. We also present some simultaneous observations of the interplanetary magnetic field (IMF) and solar wind dynamic pressure (observed using the IMP8 satellite) and the ionospheric flow (observed using the EISCAT radar) which are also only consistent with the FTE model. We estimate that for continuously southward IMF (
Resumo:
Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.
Resumo:
The usual interpretation of a flux transfer event (FTE) at the magnetopause, in terms of time-dependent and possibly patchy reconnection, demands that it generate an ionospheric signature. Recent ground-based observations have revealed that auroral transients in the cusp/cleft region have all the characteristics required of FTE effects. However, signatures in the major available dataset, namely that from low-altitude polar-orbiting satellites, have not yet been identified. In this paper, we consider a cusp pass of the DE-2 spacecraft during strongly southward IMF. The particle detectors show magnetosheath ion injection signatures. However, the satellite motion and convection are opposed, and we discuss how the observed falling energy dispersion of the precipitating ions can have arisen from a static, moving or growing source. The spatial scale of the source is typical of an FTE. A simple model of the ionospheric signature of an FTE reproduces the observed electric and magnetic field perturbations. Precipitating electrons of peak energy ∼100eV are found to lie on the predicted boundary of the newly-opened tube, very similar to those found on the edges of FTEs at the magnetopause. The injected ions are within this boundary and their dispersion is consistent with its growth as reconnection proceeds. The reconnection potential and the potential of the induced ionospheric motion are found to be the same (≃25kV). The scanning imager on DE-1 shows a localised transient auroral feature around DE-2 at this time, similar to the recent optical/radar observations of FTEs.
Resumo:
A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.
Resumo:
We make use of the Skyrme effective nuclear interaction within the time-dependent Hartree-Fock framework to assess the effect of inclusion of the tensor terms of the Skyrme interaction on the fusion window of the 16O–16O reaction. We find that the lower fusion threshold, around the barrier, is quite insensitive to these details of the force, but the higher threshold, above which the nuclei pass through each other, changes by several MeV between different tensor parametrisations. The results suggest that eventually fusion properties may become part of the evaluation or fitting process for effective nuclear interactions.
Resumo:
Thiol-bearing microgels have been synthesised from copolymerisation of 2-(acetylthio)ethylacrylate and 2-hydroxyethylmethacrylate, and subsequent deprotection using sodium thiomethoxide. The concentration of thiol groups on these microgels could be tailored by use of different molar ratios of the two monomers. These thiol-bearing microgels were shown to adhere to ex vivo porcine urinary bladder, which was correlated with their level of thiolation. By simply mixing solutions of thiol-bearing microgels and doxorubicin, high levels of drug loading into the microgels could be achieved. Thiol-bearing microgels controlled the release of doxorubicin in a time-dependent manner over several hours. These doxorubicin-loaded thiol-bearing microgels could have application in the treatment of early-stage bladder cancers. The method used represents a new ‘bottom-up’ approach for the synthesis of novel mucoadhesive microgels.
Resumo:
The martian solsticial pause, presented in a companion paper (Lewis et al., this issue), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.
Resumo:
The precipitation response to radiative forcing (RF) can be decomposed into a fast precipitation response (FPR), which depends on the atmospheric component of RF, and a slow response, which depends on surface temperature change. We present the first detailed climate model study of the FPR due to tropospheric and stratospheric ozone changes. The FPR depends strongly on the altitude of ozone change. Increases below about 3 km cause a positive FPR; increases above cause a negative FPR. The FPR due to stratospheric ozone change is, per unit RF, about 3 times larger than that due to tropospheric ozone. As historical ozone trends in the troposphere and stratosphere are opposite in sign, so too are the FPRs. Simple climate model calculations of the time-dependent total (fast and slow) precipitation change, indicate that ozone's contribution to precipitation change in 2011, compared to 1765, could exceed 50% of that due to CO2 change.
Resumo:
Objective/Background: Traditionally, sclerotherapy has been thought to work by the cytotoxic effect of the sclerosant upon the endothelium alone. However, studies have shown that sclerotherapy is more successful in smaller veins than in larger veins. This could be explained by the penetration of the sclerosant, or its effect, into the media. This study aimed to investigate intimal and medial damage profiles after sclerosant treatment. Methods: Fresh human varicose veins were treated ex vivo with either 1% or 3% sodium tetradecyl sulphate (STS) for 1 or 10 minutes. The effect of the sclerosant on the vein wall was investigated by immunofluorescent labelling of transverse vein sections using markers for endothelium (CD31), smooth muscle (a-actin), apoptosis (p53) and inflammation (intercellular adhesion molecule-1 [ICAM-1]). Polidocanol (POL; 3%) treatment at 10 minutes was similarly investigated. Results: Endothelial cell death was concentration- and time-dependent for STS but incomplete for both sclerosants. Time, but not concentration, significantly affected cell death (p > .001). A 40% and 30% maximum reduction was observed for STS and POL, respectively. Destruction of 20e30% of smooth muscle cells was found up to 250 mm from the lumen after 3% STS treatment for 10 minutes. POL treatment for 10 minutes showed inferior destruction of medial cells. Following STS treatment and 24-hour tissue culture, p53 and ICAM-1 were upregulated to a depth of around 300 mm. This effect was not observed with POL. Conclusion: Inflammatory and apoptotic markers show the same distribution as medial cell death, implying that sclerotherapy with STS works by inducing apoptosis in the vein wall rather than having an effect restricted to the endothelium. Incomplete loss of endothelial cells and penetration of the sclerosant effect up to 250 mm into the media suggest that medial damage is crucial to the success of sclerotherapy and may explain why it is less effective in larger veins.
Resumo:
Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.