96 resultados para temperature-based models
Resumo:
A method is proposed for merging different nadir-sounding climate data records using measurements from high-resolution limb sounders to provide a transfer function between the different nadir measurements. The two nadir-sounding records need not be overlapping so long as the limb-sounding record bridges between them. The method is applied to global-mean stratospheric temperatures from the NOAA Climate Data Records based on the Stratospheric Sounding Unit (SSU) and the Advanced Microwave Sounding Unit-A (AMSU), extending the SSU record forward in time to yield a continuous data set from 1979 to present, and providing a simple framework for extending the SSU record into the future using AMSU. SSU and AMSU are bridged using temperature measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), which is of high enough vertical resolution to accurately represent the weighting functions of both SSU and AMSU. For this application, a purely statistical approach is not viable since the different nadir channels are not sufficiently linearly independent, statistically speaking. The near-global-mean linear temperature trends for extended SSU for 1980–2012 are −0.63 ± 0.13, −0.71 ± 0.15 and −0.80 ± 0.17 K decade−1 (95 % confidence) for channels 1, 2 and 3, respectively. The extended SSU temperature changes are in good agreement with those from the Microwave Limb Sounder (MLS) on the Aura satellite, with both exhibiting a cooling trend of ~ 0.6 ± 0.3 K decade−1 in the upper stratosphere from 2004 to 2012. The extended SSU record is found to be in agreement with high-top coupled atmosphere–ocean models over the 1980–2012 period, including the continued cooling over the first decade of the 21st century.
Resumo:
Temperature is a key variable for monitoring global climate change. Here we perform a trend analysis of Swiss temperatures from 1959 to 2008, using a new 2 × 2 km gridded data-set based on carefully homogenised ground observations from MeteoSwiss. The aim of this study is twofold: first, to discuss the spatial and altitudinal temperature trend characteristics in detail, and second, to quantify the contribution of changes in atmospheric circulation and local effects to these trends. The seasonal trends are all positive and mostly significant with an annual average warming rate of 0.35 °C/decade (∼1.6 times the northern hemispheric warming rate), ranging from 0.17 in autumn to 0.48 °C/decade in summer. Altitude-dependent trends are found in autumn and early winter where the trends are stronger at low altitudes (<800 m asl), and in spring where slightly stronger trends are found at altitudes close to the snow line. Part of the trends can be explained by changes in atmospheric circulation, but with substantial differences from season to season. In winter, circulation effects account for more than half the trends, while this contribution is much smaller in other seasons. After removing the effect of circulation, the trends still show seasonal variations with higher values in spring and summer. The circulation-corrected trends are closer to the values simulated by a set of ENSEMBLES regional climate models, with the models still tending towards a trend underestimation in spring and summer. Our results suggest that both circulation changes and more local effects are important to explain part of recent warming in spring, summer, and autumn. Snow-albedo feedback effects could be responsible for the stronger spring trends at altitudes close to the snow line, but the overall effect is small. In autumn, the observed decrease in fog frequency might be a key process in explaining the stronger temperature trends at low altitudes.
Resumo:
The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.
Resumo:
A new generation of high-resolution (1 km) forecast models promises to revolutionize the prediction of hazardous weather such as windstorms, flash floods, and poor air quality. To realize this promise, a dense observing network, focusing on the lower few kilometers of the atmosphere, is required to verify these new forecast models with the ultimate goal of assimilating the data. At present there are insufficient systematic observations of the vertical profiles of water vapor, temperature, wind, and aerosols; a major constraint is the absence of funding to install new networks. A recent research program financed by the European Union, tasked with addressing this lack of observations, demonstrated that the assimilation of observations from an existing wind profiler network reduces forecast errors, provided that the individual instruments are strategically located and properly maintained. Additionally, it identified three further existing European networks of instruments that are currently underexploited, but with minimal expense they could deliver quality-controlled data to national weather services in near–real time, so the data could be assimilated into forecast models. Specifically, 1) several hundred automatic lidars and ceilometers can provide backscatter profiles associated with aerosol and cloud properties and structures with 30-m vertical resolution every minute; 2) more than 20 Doppler lidars, a fairly new technology, can measure vertical and horizontal winds in the lower atmosphere with a vertical resolution of 30 m every 5 min; and 3) about 30 microwave profilers can estimate profiles of temperature and humidity in the lower few kilometers every 10 min. Examples of potential benefits from these instruments are presented.
Resumo:
We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncertainty budget is comprised of a number of components, arising from uncorrelated (eg. noise), locally systematic (eg. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the results for two different SST retrieval algorithms, both at a per pixel level and for gridded data. We find good agreement between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.
Resumo:
We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern An- nular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the re- sponse of the Southern Ocean SST (55◦S−70◦S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step re- sponse function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only three years after a step increase in the SAM. This intermodel diversity can be related to differences in the models’ climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use obser- vational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.