96 resultados para submerged fermentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90%(w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitro-gen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapeseed meal (RSM) hydrolysate was evaluated as substitute for commercial nutrient supplements in 1,3-propanediol (PDO) fermentation using the strain Clostridium butyricum VPI 1718. RSM was enzymatically converted into a generic fermentation feedstock, enriched in amino acids, peptides and various micro-nutrients, using crude enzyme consortia produced via solid state fermentation by a fungal strain of Aspergillus oryzae. Initial free amino nitrogen concentration influenced PDO production in batch cultures. RSM hydrolysates were compared with commercial nutrient supplements regarding PDO production in fed-batch cultures carried out in a bench-scale bioreactor. The utilization of RSM hydrolysates in repeated batch cultivation resulted in a PDO concentration of 65.5 g/L with an overall productivity of 1.15 g/L/h that was almost 2 times higher than the productivity achieved when yeast extract was used as nutrient supplement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By-products streams from a sunflower-based biodiesel plant were utilised for the production of fermentation media that can be used for the production of polyhydroxyalkanoates (PHA). Sunflower meal was utilised as substrate for the production of crude enzyme consortia through solid state fermentation (SSF) with the fungal strain Aspergillus oryzae. Fermented solids were subsequently mixed with unprocessed sunflower meal aiming at the production of a nutrient-rich fermentation feedstock. The highest free amino nitrogen (FAN) and inorganic phosphorus concentrations achieved were 1.5 g L-1 and 246 mg L-1, respectively, when an initial proteolytic activity of 6.4 U mL-1 was used. The FANconcentrationwas increased to 2.3 g L-1 when the initial proteolytic activity was increased to 16 U mL-1. Sunflower meal hydrolysates were mixed with crude glycerol to provide fermentationmedia that were evaluated for the production of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (P(3HB-co-3HV)) using Cupriavidus necator DSM545. The P(3HB-co-3HV) (9.9 g l-1) produced contained 3HB and 3HV units with 97 and 3 mol %, respectively. Integrating PHA production in existing 1st generation biodiesel production plants through valorisation of by-product streams could improve their sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An in vitro study was conducted to investigate the effects of condensed tannins (CT) structural properties, i.e. average polymer size (or mean degree of polymerization); percentage of cis flavan-3-ols and percentage of prodelphinidins in CT extracts on methane production (CH4) and fermentation characteristics. CT were extracted from eight plants in order to obtain different CT types: black currant leaves, goat willow leaves, goat willow twigs, pine bark, red currant leaves, sainfoin plants, weeping willow catkins and white clover flowers. They were analysed for CT content and CT composition by thiolytic degradation, followed by HPLC analysis. Grass silage was used as a control substrate. Condensed tannins were added to the substrate at a concentration of 40 g/kg, with or without polyethylene glycol (+ or −PEG 6000 treatment) to inactivate tannins, and then incubated for 72 h in mixed buffered rumen fluid from three different lactating dairy cows per run. Total cumulative gas production (GP) was measured by an automated gas production system. During the incubation, 12 gas samples (10 μl) were collected from each bottle headspace at 0, 2, 4, 6, 8, 12, 24, 30, 36, 48, 56 and 72 h of incubation and analyzed for CH4. A modified Michaelis–Menten model was fitted to the CH4 concentration patterns and model estimates were used to calculate total cumulative CH4 production (GPCH4). Total cumulative gas production and GPCH4 curves were fitted using biphasic and monophasic modified Michaelis-Menten models, respectively. Addition of PEG increased GP, GPCH4, and CH4 concentration compared to the −PEG treatment. All CT types reduced GPCH4 and CH4 concentration. All CT increased the half time of GP and GPCH4. Moreover, all CT decreased the maximum rate of fermentation for GPCH4 and rate of substrate degradation. The correlation between CT structure and GPCH4 and fermentation characteristics showed that the proportion of prodelphinidins within CT had the largest effect on fermentation characteristics, followed by average 27 polymer size and percentage of cis-flavan-3-ols.