111 resultados para statistical coupling analysis
Resumo:
As in any field of scientific inquiry, advancements in the field of second language acquisition (SLA) rely in part on the interpretation and generalizability of study findings using quantitative data analysis and inferential statistics. While statistical techniques such as ANOVA and t-tests are widely used in second language research, this review article provides a review of a class of newer statistical models that have not yet been widely adopted in the field, but have garnered interest in other fields of language research. The class of statistical models called mixed-effects models are introduced, and the potential benefits of these models for the second language researcher are discussed. A simple example of mixed-effects data analysis using the statistical software package R (R Development Core Team, 2011) is provided as an introduction to the use of these statistical techniques, and to exemplify how such analyses can be reported in research articles. It is concluded that mixed-effects models provide the second language researcher with a powerful tool for the analysis of a variety of types of second language acquisition data.
Resumo:
In traditional and geophysical fluid dynamics, it is common to describe stratified turbulent fluid flows with low Mach number and small relative density variations by means of the incompressible Boussinesq approximation. Although such an approximation is often interpreted as decoupling the thermodynamics from the dynamics, this paper reviews recent results and derive new ones that show that the reality is actually more subtle and complex when diabatic effects and a nonlinear equation of state are retained. Such an analysis reveals indeed: (1) that the compressible work of expansion/contraction remains of comparable importance as the mechanical energy conversions in contrast to what is usually assumed; (2) in a Boussinesq fluid, compressible effects occur in the guise of changes in gravitational potential energy due to density changes. This makes it possible to construct a fully consistent description of the thermodynamics of incompressible fluids for an arbitrary nonlinear equation of state; (3) rigorous methods based on using the available potential energy and potential enthalpy budgets can be used to quantify the work of expansion/contraction B in steady and transient flows, which reveals that B is predominantly controlled by molecular diffusive effects, and act as a significant sink of kinetic energy.
Resumo:
The protein encoded by the PPARGC1A gene is expressed at high levels in metabolically active tissues and is involved in the control of oxidative stress via reactive oxygen species detoxification. Several recent reports suggest that the PPARGC1A Gly482Ser (rs8192678) missense polymorphism may relate inversely with blood pressure. We used conventional meta-analysis methods to assess the association between Gly482Ser and systolic (SBP) or diastolic blood pressures (DBP) or hypertension in 13,949 individuals from 17 studies, of which 6,042 were previously unpublished observations. The studies comprised cohorts of white European, Asian, and American Indian adults, and adolescents from South America. Stratified analyses were conducted to control for population stratification. Pooled genotype frequencies were 0.47 (Gly482Gly), 0.42 (Gly482Ser), and 0.11 (Ser482Ser). We found no evidence of association between Gly482Ser and SBP [Gly482Gly: mean = 131.0 mmHg, 95% confidence interval (CI) = 130.5-131.5 mmHg; Gly482Ser mean = 133.1 mmHg, 95% CI = 132.6-133.6 mmHg; Ser482Ser: mean = 133.5 mmHg, 95% CI = 132.5-134.5 mmHg; P = 0.409] or DBP (Gly482Gly: mean = 80.3 mmHg, 95% CI = 80.0-80.6 mmHg; Gly482Ser mean = 81.5 mmHg, 95% CI = 81.2-81.8 mmHg; Ser482Ser: mean = 82.1 mmHg, 95% CI = 81.5-82.7 mmHg; P = 0.651). Contrary to previous reports, we did not observe significant effect modification by sex (SBP, P = 0.966; DBP, P = 0.715). We were also unable to confirm the previously reported association between the Ser482 allele and hypertension [odds ratio: 0.97, 95% CI = 0.87-1.08, P = 0.585]. These results were materially unchanged when analyses were focused on whites only. However, statistical evidence of gene-age interaction was apparent for DBP [Gly482Gly: 73.5 (72.8, 74.2), Gly482Ser: 77.0 (76.2, 77.8), Ser482Ser: 79.1 (77.4, 80.9), P = 4.20 x 10(-12)] and SBP [Gly482Gly: 121.4 (120.4, 122.5), Gly482Ser: 125.9 (124.6, 127.1), Ser482Ser: 129.2 (126.5, 131.9), P = 7.20 x 10(-12)] in individuals <50 yr (n = 2,511); these genetic effects were absent in those older than 50 yr (n = 5,088) (SBP, P = 0.41; DBP, P = 0.51). Our findings suggest that the PPARGC1A Ser482 allele may be associated with higher blood pressure, but this is only apparent in younger adults.
Resumo:
This chapter applies rigorous statistical analysis to existing datasets of medieval exchange rates quoted in merchants’ letters sent from Barcelona, Bruges and Venice between 1380 and 1310, which survive in the archive of Francesco di Marco Datini of Prato. First, it tests the exchange rates for stationarity. Second, it uses regression analysis to examine the seasonality of exchange rates at the three financial centres and compares them against contemporary descriptions by the merchant Giovanni di Antonio da Uzzano. Third, it tests for structural breaks in the exchange rate series.
Resumo:
We investigate the initialization of Northern-hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates significantly reduces assimilation error both in identical-twin experiments and when assimilating sea-ice observations, reducing the concentration error by a factor of four to six, and the thickness error by a factor of two. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that the strong dependence of thermodynamic ice growth on ice concentration necessitates an adjustment of mean ice thickness in the analysis update. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that proportional mean-thickness updates are superior to the other two methods considered and enable us to assimilate sea ice in a global climate model using simple Newtonian relaxation.
Resumo:
We investigate the initialisation of Northern Hemisphere sea ice in the global climate model ECHAM5/MPI-OM by assimilating sea-ice concentration data. The analysis updates for concentration are given by Newtonian relaxation, and we discuss different ways of specifying the analysis updates for mean thickness. Because the conservation of mean ice thickness or actual ice thickness in the analysis updates leads to poor assimilation performance, we introduce a proportional dependence between concentration and mean thickness analysis updates. Assimilation with these proportional mean-thickness analysis updates leads to good assimilation performance for sea-ice concentration and thickness, both in identical-twin experiments and when assimilating sea-ice observations. The simulation of other Arctic surface fields in the coupled model is, however, not significantly improved by the assimilation. To understand the physical aspects of assimilation errors, we construct a simple prognostic model of the sea-ice thermodynamics, and analyse its response to the assimilation. We find that an adjustment of mean ice thickness in the analysis update is essential to arrive at plausible state estimates. To understand the statistical aspects of assimilation errors, we study the model background error covariance between ice concentration and ice thickness. We find that the spatial structure of covariances is best represented by the proportional mean-thickness analysis updates. Both physical and statistical evidence supports the experimental finding that assimilation with proportional mean-thickness updates outperforms the other two methods considered. The method described here is very simple to implement, and gives results that are sufficiently good to be used for initialising sea ice in a global climate model for seasonal to decadal predictions.
Resumo:
In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.
Resumo:
The aim of this study was to determine whether geographical differences impact the composition of bacterial communities present in the airways of cystic fibrosis (CF) patients attending CF centers in the United States or United Kingdom. Thirty-eight patients were matched on the basis of clinical parameters into 19 pairs comprised of one U.S. and one United Kingdom patient. Analysis was performed to determine what, if any, bacterial correlates could be identified. Two culture-independent strategies were used: terminal restriction fragment length polymorphism (T-RFLP) profiling and 16S rRNA clone sequencing. Overall, 73 different terminal restriction fragment lengths were detected, ranging from 2 to 10 for U.S. and 2 to 15 for United Kingdom patients. The statistical analysis of T-RFLP data indicated that patient pairing was successful and revealed substantial transatlantic similarities in the bacterial communities. A small number of bands was present in the vast majority of patients in both locations, indicating that these are species common to the CF lung. Clone sequence analysis also revealed that a number of species not traditionally associated with the CF lung were present in both sample groups. The species number per sample was similar, but differences in species presence were observed between sample groups. Cluster analysis revealed geographical differences in bacterial presence and relative species abundance. Overall, the U.S. samples showed tighter clustering with each other compared to that of United Kingdom samples, which may reflect the lower diversity detected in the U.S. sample group. The impact of cross-infection and biogeography is considered, and the implications for treating CF lung infections also are discussed.
Resumo:
The paper analyses the impact of a priori determinants of biosecurity behaviour of farmers in Great Britain. We use a dataset collected through a stratified telephone survey of 900 cattle and sheep farmers in Great Britain (400 in England and a further 250 in Wales and Scotland respectively) which took place between 25 March 2010 and 18 June 2010. The survey was stratified by farm type, farm size and region. To test the influence of a priori determinants on biosecurity behaviour we used a behavioural economics method, structural equation modelling (SEM) with observed and latent variables. SEM is a statistical technique for testing and estimating causal relationships amongst variables, some of which may be latent using a combination of statistical data and qualitative causal assumptions. Thirteen latent variables were identified and extracted, expressing the behaviour and the underlying determining factors. The variables were: experience, economic factors, organic certification of farm, membership in a cattle/sheep health scheme, perceived usefulness of biosecurity information sources, knowledge about biosecurity measures, perceived importance of specific biosecurity strategies, perceived effect (on farm business in the past five years) of welfare/health regulation, perceived effect of severe outbreaks of animal diseases, attitudes towards livestock biosecurity, attitudes towards animal welfare, influence on decision to apply biosecurity measures and biosecurity behaviour. The SEM model applied on the Great Britain sample has an adequate fit according to the measures of absolute, incremental and parsimonious fit. The results suggest that farmers’ perceived importance of specific biosecurity strategies, organic certification of farm, knowledge about biosecurity measures, attitudes towards animal welfare, perceived usefulness of biosecurity information sources, perceived effect on business during the past five years of severe outbreaks of animal diseases, membership in a cattle/sheep health scheme, attitudes towards livestock biosecurity, influence on decision to apply biosecurity measures, experience and economic factors are significantly influencing behaviour (overall explaining 64% of the variance in behaviour).
Resumo:
A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.
Resumo:
Regional climate downscaling has arrived at an important juncture. Some in the research community favour continued refinement and evaluation of downscaling techniques within a broader framework of uncertainty characterisation and reduction. Others are calling for smarter use of downscaling tools, accepting that conventional, scenario-led strategies for adaptation planning have limited utility in practice. This paper sets out the rationale and new functionality of the Decision Centric (DC) version of the Statistical DownScaling Model (SDSM-DC). This tool enables synthesis of plausible daily weather series, exotic variables (such as tidal surge), and climate change scenarios guided, not determined, by climate model output. Two worked examples are presented. The first shows how SDSM-DC can be used to reconstruct and in-fill missing records based on calibrated predictor-predictand relationships. Daily temperature and precipitation series from sites in Africa, Asia and North America are deliberately degraded to show that SDSM-DC can reconstitute lost data. The second demonstrates the application of the new scenario generator for stress testing a specific adaptation decision. SDSM-DC is used to generate daily precipitation scenarios to simulate winter flooding in the Boyne catchment, Ireland. This sensitivity analysis reveals the conditions under which existing precautionary allowances for climate change might be insufficient. We conclude by discussing the wider implications of the proposed approach and research opportunities presented by the new tool.
Resumo:
Simultaneous observations in the high-latitude ionosphere and in the near-Earth interplanetary medium have revealed the control exerted by the interplanetary magnetic field and the solar wind flow on field-perpendicular convection of plasma in both the ionosphere and the magnetosphere. Previous studies, using statistical surveys of data from both low-altitude polar-orbiting satellites and ground-based radars and magnetometers, have established that magnetic reconnection at the dayside magnetopause is the dominant driving mechanism for convection. More recently, ground-based data and global auroral images of higher temporal resolution have been obtained and used to study the response of the ionospheric flows to changes in the interplanetary medium. These observations show that ionospheric convection responds rapidly (within a few minutes) to both increases and decreases in the reconnection rate over a range of spatial scales, as well as revealing transient enhancements which are also thought to be related to magnetopause phenomena. Such results emphasize the potential of ground-based radars and other remote-sensing instruments for studies of the Earth's interaction with the interplanetary medium.
Resumo:
Sudden stratospheric warmings (SSWs) are the most prominent vertical coupling process in the middle atmosphere, which occur during winter and are caused by the interaction of planetary waves (PWs) with the zonal mean flow. Vertical coupling has also been identified during the equinox transitions, and is similarly associated with PWs. We argue that there is a characteristic aspect of the autumn transition in northern high latitudes, which we call the “hiccup”, and which acts like a “mini SSW”, i.e. like a small minor warming. We study the average characteristics of the hiccup based on a superimposed epoch analysis using a nudged version of the Canadian Middle Atmosphere Model, representing 30 years of historical data. Hiccups can be identified in about half the years studied. The mesospheric zonal wind results are compared to radar observations over Andenes (69N,16E) for the years 2000–2013. A comparison of the average characteristics of hiccups and SSWs shows both similarities and differences between the two vertical coupling processes.
Resumo:
Human brain imaging techniques, such as Magnetic Resonance Imaging (MRI) or Diffusion Tensor Imaging (DTI), have been established as scientific and diagnostic tools and their adoption is growing in popularity. Statistical methods, machine learning and data mining algorithms have successfully been adopted to extract predictive and descriptive models from neuroimage data. However, the knowledge discovery process typically requires also the adoption of pre-processing, post-processing and visualisation techniques in complex data workflows. Currently, a main problem for the integrated preprocessing and mining of MRI data is the lack of comprehensive platforms able to avoid the manual invocation of preprocessing and mining tools, that yields to an error-prone and inefficient process. In this work we present K-Surfer, a novel plug-in of the Konstanz Information Miner (KNIME) workbench, that automatizes the preprocessing of brain images and leverages the mining capabilities of KNIME in an integrated way. K-Surfer supports the importing, filtering, merging and pre-processing of neuroimage data from FreeSurfer, a tool for human brain MRI feature extraction and interpretation. K-Surfer automatizes the steps for importing FreeSurfer data, reducing time costs, eliminating human errors and enabling the design of complex analytics workflow for neuroimage data by leveraging the rich functionalities available in the KNIME workbench.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.