97 resultados para simulated drift
Resumo:
Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.
Resumo:
This study aims at the determination of a Fram Strait cyclone track and of the cyclone’s impact on ice edge, drift, divergence, and concentration. A 24 h period on 13–14 March 2002 framed by two RADARSAT images is analyzed. Data are included from autonomous ice buoys, a research vessel, Special Sensor Microwave Imager (SSM/I) and QuikSCAT satellite, and the operational European Centre for Medium-Range Weather Forecasts (ECMWF) model. During this 24 h period the cyclone moved northward along the western ice edge in the Fram Strait, crossed the northern ice edge, made a left-turn loop with 150 km diameter over the sea ice, and returned to the northern ice edge. The ECMWF analysis places the cyclone track 100 km too far west over the sea ice, a deviation which is too large for representative sea ice simulations. On the east side of the northward moving cyclone, the ice edge was pushed northward by 55 km because of strong winds. On the rear side, the ice edge advanced toward the open water but by a smaller distance because of weaker winds there. The ice drift pattern as calculated from the ice buoys and the two RADARSAT images is cyclonically curved around the center of the cyclone loop. Ice drift divergence shows a spatial pattern with divergence in the loop center and a zone of convergence around. Ice concentration changes as retrieved from SSM/I data follow the divergence pattern such that sea ice concentration increased in areas of divergence and decreased in areas of convergence.
Resumo:
The sea ice export from the Arctic is of global importance due to its fresh water which influences the oceanic stratification and, thus, the global thermohaline circulation. This study deals with the effect of cyclones on sea ice and sea ice transport in particular on the basis of observations from two field experiments FRAMZY 1999 and FRAMZY 2002 in April 1999 and March 2002 as well as on the basis of simulations with a numerical sea ice model. The simulations realised by a dynamic-thermodynamic sea ice model are forced with 6-hourly atmospheric ECMWF- analyses (European Centre for Medium-Range Weather Forecasts) and 6-hourly oceanic data of a MPI-OM-simulation (Max-Planck-Institute Ocean Model). Comparing the observed and simulated variability of the sea ice drift and of the position of the ice edge shows that the chosen configuration of the model is appropriate for the performed studies. The seven observed cyclones change the position of the ice edge up to 100 km and cause an extensive decrease of sea ice coverage by 2 % up to more than 10 %. The decrease is only simulated by the model if the ocean current is strongly divergent in the centre of the cyclone. The impact is remarkable of the ocean current on divergence and shear deformation of the ice drift. As shown by sensitivity studies the ocean current at a depth of 6 m – the sea ice model is forced with – is mainly responsible for the ascertained differences between simulation and observation. The simulated sea ice transport shows a strong variability on a time scale from hours to days. Local minima occur in the time series of the ice transport during periods with Fram Strait cyclones. These minima are not caused by the local effect of the cyclone’s wind field, but mainly by the large-scale pattern of surface pressure. A displacement of the areas of strongest cyclone activity in the Nordic Seas would considerably influence the ice transport.
Resumo:
In analysis of complex nuclear forensic samples containing lanthanides, actinides and matrix elements, rapid selective extraction of Am/Cm for quantification is challenging, in particular due the difficult separation of Am/Cm from lanthanides. Here we present a separation process for Am/Cm(III) which is achieved using a combination of AG1-X8 chromatography followed by Am/Cm extraction with a triazine ligand. The ligands tested in our process were CyMe4-BTPhen, CyMe4- BTBP, CA-BTP and CA-BTPhen. Our process allows for purification and quantification of Am and Cm (recoveries 80%–100%) and other major actinides in < 2d without the use of multiple columns or thiocyanate. The process is unaffected by high level Ca(II)/Fe(III)/Al(III) (10mg mL−1) and thus requires little pre-treatment of samples.
Resumo:
Unpredictable flooding is a major constraint to rice production. It can occur at any growth stage. The effect of simulated flooding post-anthesis on yield and subsequent seed quality of pot-grown rice (Oryza sativa L.) plants was investigated in glasshouses and controlled-environment growth cabinets. Submergence post-anthesis (9-40 DAA) for 3 or 5 days reduced seed weight of japonica rice cv. Gleva, with considerable pre-harvest sprouting (up to 53%). The latter was greater the later in seed development and maturation that flooding occurred. Sprouted seed had poor ability to survive desiccation or germinate normally upon rehydration, whereas the effects of flooding on the subsequent air-dry seed storage longevity (p50) of the non-sprouted seed fraction was negligible. The indica rice cvs IR64 and IR64Sub1 (introgression of submergence tolerance gene Submergence1A-1) were both far more tolerant to flooding post-anthesis than cv. Gleva: four days’ submergence of these two near-isogenic cultivars at 10-40 DAA resulted less than 1% sprouted seeds. The presence of the Sub1A-1 allele in cv. IR64Sub1 was verified by gel electrophoresis and DNA sequencing. It had no harmful effect on loss in seed viability during storage compared with IR64 in both control and flooded environments. Moreover, the germinability and changes in dormancy during seed development and maturation were very similar to IR64. The efficiency of using chemical spray to increase seed dormancy was investigated in the pre-harvest sprouting susceptible rice cv. Gleva. Foliar application of molybdenum at 100 mg L-1 reduced sprouted seeds by 15-21% following 4 days’ submergence at 20-30 DAA. Analyses confirmed that the treatment did result in molybdenum uptake by the plants, and also tended to increase seed abscisic acid concentration. The latter was reduced by submergence and declined exponentially during grain ripening. The selection of submergence-tolerant varieties was more successful than application of molybdenum in reducing pre-harvest sprouting.
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Resumo:
The effects of simulated additional rain (ear wetting, 25 mm) or of rain shelter imposed at different periods after anthesis on grain quality at maturity and the dynamics of grain filling and desiccation were investigated in UK field-grown crops of wheat (Triticum aestivum L., cvar Tybalt) in 2011 and in 2012 when June–August rainfall was 255.0 and 214.6 mm, respectively, and above the decadal mean (157.4 mm). Grain filling and desiccation were quantified well by broken-stick regressions and Gompertz curves, respectively. Rain shelter for 56 (2011) or 70 d (2012) after anthesis, and to a lesser extent during late maturation only, resulted in more rapid desiccation and hence progress to harvest maturity whereas ear wetting had negligible effects, even when applied four times. Grain-filling duration was also affected as above in 2011, but with no significant effect in 2012. In both years, there were strong positive associations between final grain dry weight and duration of filling. The treatments affected all grain quality traits in 2011: nitrogen (N) and sulphur (S) concentrations, N:S ratio, sodium dodecyl sulphate (SDS) sedimentation volume, Hagberg Falling Number (HFN), and the incidence of blackpoint. Only N concentration and blackpoint were affected significantly by treatments in 2012. Rain shelter throughout grain filling reduced N concentration, whereas rain shelter reduced the incidence of blackpoint and ear wetting increased it. In 2011, rain shelter throughout reduced S concentration, increased N:S ratio and reduced SDS. Treatment effects on HFN were not consistent within or between years. Nevertheless, a comparison between the extreme treatment means in 2012 indicated damage from late rain combined with ear wetting resulted in a reduction of c. 0.7 s in HFN/mm August rainfall, whilst that between samples taken immediately after ear wetting at harvest maturity or 7 d later suggested recovery from damage to HFN upon re-drying in planta. Hence, the incidence of blackpoint was the only grain quality trait affected consistently by the diverse treatments. The remaining aspects of grain quality were comparatively resilient to rain incident upon developing and maturing ears of cvar Tybalt. No consistent temporal patterns of sensitivity to shelter or ear wetting were detected for any aspect of grain quality.