127 resultados para robotics manipulators
Resumo:
Smooth trajectories are essential for safe interaction in between human and a haptic interface. Different methods and strategies have been introduced to create such smooth trajectories. This paper studies the creation of human-like movements in haptic interfaces, based on the study of human arm motion. These motions are intended to retrain the upper limb movements of patients that lose manipulation functions following stroke. We present a model that uses higher degree polynomials to define a trajectory and control the robot arm to achieve minimum jerk movements. It also studies different methods that can be driven from polynomials to create more realistic human-like movements for therapeutic purposes.
Resumo:
In this paper we have explored areas of application for health care manipulators and possible user groups. We have shown the steps in the design approach to the conceptual mechanism from the AAS. The future work will be measurement from properties of the muscle with the elbow parameterization test-bed to get a database to design one part of the control area from the AAS. More work on the mechanical design is required before a functional prototype can be built.
Resumo:
Foundation construction process has been an important key point in a successful construction engineering. The frequency of using diaphragm wall construction method among many deep excavation construction methods in Taiwan is the highest in the world. The traditional view of managing diaphragm wall unit in the sequencing of construction activities is to establish each phase of the sequencing of construction activities by heuristics. However, it conflicts final phase of engineering construction with unit construction and effects planning construction time. In order to avoid this kind of situation, we use management of science in the study of diaphragm wall unit construction to formulate multi-objective combinational optimization problem. Because the characteristic (belong to NP-Complete problem) of problem mathematic model is multi-objective and combining explosive, it is advised that using the 2-type Self-Learning Neural Network (SLNN) to solve the N=12, 24, 36 of diaphragm wall unit in the sequencing of construction activities program problem. In order to compare the liability of the results, this study will use random researching method in comparison with the SLNN. It is found that the testing result of SLNN is superior to random researching method in whether solution-quality or Solving-efficiency.
Resumo:
Strokes affect thousands of people worldwide leaving sufferers with severe disabilities affecting their daily activities. In recent years, new rehabilitation techniques have emerged such as constraint-induced therapy, biofeedback therapy and robot-aided therapy. In particular, robotic techniques allow precise recording of movements and application of forces to the affected limb, making it a valuable tool for motor rehabilitation. In addition, robot-aided therapy can utilise visual cues conveyed on a computer screen to convert repetitive movement practice into an engaging task such as a game. Visual cues can also be used to control the information sent to the patient about exercise performance and to potentially address psychosomatic variables influencing therapy. This paper overviews the current state-of-the-art on upper limb robot-mediated therapy with a focal point on the technical requirements of robotic therapy devices leading to the development of upper limb rehabilitation techniques that facilitate reach-to-touch, fine motor control, whole-arm movements and promote rehabilitation beyond hospital stay. The reviewed literature suggest that while there is evidence supporting the use of this technology to reduce functional impairment, besides the technological push, the challenge ahead lies on provision of effective assessment of outcome and modalities that have a stronger impact transferring functional gains into functional independence.
Resumo:
A growing awareness of the potential for machine-mediated neurorehabilitation has led to several novel concepts for delivering these therapies. To get from laboratory demonstrators and prototypes to the point where the concepts can be used by clinicians in practice still requires significant additional effort, not least in the requirement to assess and measure the impact of any proposed solution. To be widely accepted a study is required to use validated clinical measures but these tend to be subjective, costly to administer and may be insensitive to the effect of the treatment. Although this situation will not change, there is good reason to consider both clinical and mechanical assessments of recovery. This article outlines the problems in measuring the impact of an intervention and explores the concept of providing more mechanical assessment techniques and ultimately the possibility of combining the assessment process with aspects of the intervention.
Resumo:
Automatically extracting interesting objects from videos is a very challenging task and is applicable to many research areas such robotics, medical imaging, content based indexing and visual surveillance. Automated visual surveillance is a major research area in computational vision and a commonly applied technique in an attempt to extract objects of interest is that of motion segmentation. Motion segmentation relies on the temporal changes that occur in video sequences to detect objects, but as a technique it presents many challenges that researchers have yet to surmount. Changes in real-time video sequences not only include interesting objects, environmental conditions such as wind, cloud cover, rain and snow may be present, in addition to rapid lighting changes, poor footage quality, moving shadows and reflections. The list provides only a sample of the challenges present. This thesis explores the use of motion segmentation as part of a computational vision system and provides solutions for a practical, generic approach with robust performance, using current neuro-biological, physiological and psychological research in primate vision as inspiration.
Resumo:
Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined, whether machines can 'think', sensory input in machine systems, the nature of consciousness, the controversial culturing of human neurons. Exploring issues at the heart of the subject, this book is suitable for anyone interested in AI, and provides an illuminating and accessible introduction to this fascinating subject.
Resumo:
In this article, four different practical experiments in robotics and human/machine merger are firstly described and then considered with regard to their ethical implications. Results from the experiments are discussed in terms of their meaning and application possibilities. The article is written from the perspective of scientific experimentation, opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are key elements.
Resumo:
The aim of this article is to identify the key factors that are associated with the adoption of a commercial robot in the home. This article is based on the development of the robot product Cybot by the University of Reading in conjunction with a publisher (Eaglemoss International Ltd.). The robots were distributed through a new part-work magazine series (Ultimate Real Robots) that had long-term customer usage and retention. A part-work is a serial publication that is issued periodically (e.g., every two weeks), usually in magazine format, and builds into a complete collection. This magazine focused on robotics and was accompanied by cover-mounted component parts that could be assembled, with instructions, by the user to build a working robot over the series. In total, the product contributed over half a million operational domestic robots to the world market, selling over 20 million robot part-work magazines across 18 countries, thereby providing a unique breadth of insight. Gaining a better understanding of the overall attitudes that customers of this product had toward robots in the home, their perception of what such devices could deliver and how they would wish to interact with them should provide results applicable to the domestic appliance, assistance/care, entertainment, and educational markets.