154 resultados para range shifts
Resumo:
The primary objective was to determine fatty acid composition of skinless chicken breast and leg meat portions and chicken burgers and nuggets from the economy price range, standard price range (both conventional intensive rearing) and the organic range from four leading supermarkets. Few significant differences in the SFA, MUFA and PUFA composition of breast and leg meat portions were found among price ranges, and supermarket had no effect. No significant differences in fatty acid concentrations of economy and standard chicken burgers were found, whereas economy chicken nuggets had higher C16:1, C18:1 cis, C18:1 trans and C18:3 n-3 concentrations than had standard ones. Overall, processed chicken products had much higher fat contents and SFA than had whole meat. Long chain n-3 fatty acids had considerably lower concentrations in processed products than in whole meat. Overall there was no evidence that organic chicken breast or leg meat had a more favourable fatty acid composition than had meat from conventionally reared birds.
Resumo:
Social housing policy in the UK mirrors wider processes Associated with shifts in broad welfare regimes. Social housing has moved from dominance by state housing provision to the funding of new investment through voluntary sector housing associations to what is now a greater focus on the regulation and private financing of these not-for-profit bodies. If these trends run their course, we are likely to see a range of not-for-profit bodies providing non-market housing in a highly regulated quasi-market. This paper examines these issues through the lens of new institutional economics, which it is believed can provide important insights into the fundamental contractual and regulatory relationships that are coming to dominate social housing from the perspective of the key actors in the sector (not-for-profit housing organisations, their tenants, private lenders and the regulatory state). The paper draws on evidence recently collected from a study evaluating more than 100 stock transfer organisations that inherited ex-public housing in Scotland, including 12 detailed case studies. The paper concludes that social housing stakeholders need to be aware of the risks (and their management) faced across the sector and that the state needs to have clear objectives for social housing and coherent policy instruments to achieve those ends.
Resumo:
We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.
Resumo:
Systematic climate shifts have been linked to multidecadal variability in observed sea surface temperatures in the North Atlantic Ocean1. These links are extensive, influencing a range of climate processes such as hurricane activity2 and African Sahel3, 4, 5 and Amazonian5 droughts. The variability is distinct from historical global-mean temperature changes and is commonly attributed to natural ocean oscillations6, 7, 8, 9, 10. A number of studies have provided evidence that aerosols can influence long-term changes in sea surface temperatures11, 12, but climate models have so far failed to reproduce these interactions6, 9 and the role of aerosols in decadal variability remains unclear. Here we use a state-of-the-art Earth system climate model to show that aerosol emissions and periods of volcanic activity explain 76 per cent of the simulated multidecadal variance in detrended 1860–2005 North Atlantic sea surface temperatures. After 1950, simulated variability is within observational estimates; our estimates for 1910–1940 capture twice the warming of previous generation models but do not explain the entire observed trend. Other processes, such as ocean circulation, may also have contributed to variability in the early twentieth century. Mechanistically, we find that inclusion of aerosol–cloud microphysical effects, which were included in few previous multimodel ensembles, dominates the magnitude (80 per cent) and the spatial pattern of the total surface aerosol forcing in the North Atlantic. Our findings suggest that anthropogenic aerosol emissions influenced a range of societally important historical climate events such as peaks in hurricane activity and Sahel drought. Decadal-scale model predictions of regional Atlantic climate will probably be improved by incorporating aerosol–cloud microphysical interactions and estimates of future concentrations of aerosols, emissions of which are directly addressable by policy actions.
Resumo:
At the end of the 20th century, we can look back on a spectacular development of numerical weather prediction, which has, practically uninterrupted, been going on since the middle of the century. High-resolution predictions for more than a week ahead for any part of the globe are now routinely produced and anyone with an Internet connection can access many of these forecasts for anywhere in the world. Extended predictions for several seasons ahead are also being done — the latest El Niño event in 1997/1998 is an example of such a successful prediction. The great achievement is due to a number of factors including the progress in computational technology and the establishment of global observing systems, combined with a systematic research program with an overall strategy towards building comprehensive prediction systems for climate and weather. In this article, I will discuss the different evolutionary steps in this development and the way new scientific ideas have contributed to efficiently explore the computing power and in using observations from new types of observing systems. Weather prediction is not an exact science due to unavoidable errors in initial data and in the models. To quantify the reliability of a forecast is therefore essential and probably more so the longer the forecasts are. Ensemble prediction is thus a new and important concept in weather and climate prediction, which I believe will become a routine aspect of weather prediction in the future. The limit between weather and climate prediction is becoming more and more diffuse and in the final part of this article I will outline the way I think development may proceed in the future.
Resumo:
Total ozone trends are typically studied using linear regression models that assume a first-order autoregression of the residuals [so-called AR(1) models]. We consider total ozone time series over 60°S–60°N from 1979 to 2005 and show that most latitude bands exhibit long-range correlated (LRC) behavior, meaning that ozone autocorrelation functions decay by a power law rather than exponentially as in AR(1). At such latitudes the uncertainties of total ozone trends are greater than those obtained from AR(1) models and the expected time required to detect ozone recovery correspondingly longer. We find no evidence of LRC behavior in southern middle-and high-subpolar latitudes (45°–60°S), where the long-term ozone decline attributable to anthropogenic chlorine is the greatest. We thus confirm an earlier prediction based on an AR(1) analysis that this region (especially the highest latitudes, and especially the South Atlantic) is the optimal location for the detection of ozone recovery, with a statistically significant ozone increase attributable to chlorine likely to be detectable by the end of the next decade. In northern middle and high latitudes, on the other hand, there is clear evidence of LRC behavior. This increases the uncertainties on the long-term trend attributable to anthropogenic chlorine by about a factor of 1.5 and lengthens the expected time to detect ozone recovery by a similar amount (from ∼2030 to ∼2045). If the long-term changes in ozone are instead fit by a piecewise-linear trend rather than by stratospheric chlorine loading, then the strong decrease of northern middle- and high-latitude ozone during the first half of the 1990s and its subsequent increase in the second half of the 1990s projects more strongly on the trend and makes a smaller contribution to the noise. This both increases the trend and weakens the LRC behavior at these latitudes, to the extent that ozone recovery (according to this model, and in the sense of a statistically significant ozone increase) is already on the verge of being detected. The implications of this rather controversial interpretation are discussed.
Resumo:
Long-range global climate forecasts were made by use of a model for predicting a tropical Pacific sea-surface temperature (SST) in tandem with an atmospheric general circulation model. The SST is predicted first at long lead times into the future. These ocean forecasts are then used to force the atmospheric model and so produce climate forecasts at lead times of the SST forecasts. Prediction of seven large climatic events of the 1970s to 1990s by this technique are in good agreement with observations over many regions of the globe.
Resumo:
The first ECMWF Seminar in 1975 (ECMWF, 1975) considered the scientific foundation of medium range weather forecasts. It may be of interest as a part of this lecture, to review some of the ideas and opinions expressed during this seminar.