93 resultados para plate-and-frame heat exchanger
Resumo:
The polynyas of the Laptev Sea are regions of particular interest due to the strong formation of Arctic sea-ice. In order to simulate the polynya dynamics and to quantify ice production, we apply the Finite Element Sea-Ice Ocean Model FESOM. In previous simulations FESOM has been forced with daily atmospheric NCEP (National Centers for Environmental Prediction) 1. For the periods 1 April to 9 May 2008 and 1 January to 8 February 2009 we examine the impact of different forcing data: daily and 6-hourly NCEP reanalyses 1 (1.875° x 1.875°), 6-hourly NCEP reanalyses 2 (1.875° x 1.875°), 6-hourly analyses from the GME (Global Model of the German Weather Service) (0.5° x 0.5°) and high-resolution hourly COSMO (Consortium for Small-Scale Modeling) data (5 km x 5 km). In all FESOM simulations, except for those with 6-hourly and daily NCEP 1 data, the openings and closings of polynyas are simulated in principle agreement with satellite products. Over the fast-ice area the wind fields of all atmospheric data are similar and close to in situ measurements. Over the polynya areas, however, there are strong differences between the forcing data with respect to air temperature and turbulent heat flux. These differences have a strong impact on sea-ice production rates. Depending on the forcing fields polynya ice production ranges from 1.4 km3 to 7.8 km3 during 1 April to 9 May 2011 and from 25.7 km3 to 66.2 km3 during 1 January to 8 February 2009. Therefore, atmospheric forcing data with high spatial and temporal resolution which account for the presence of the polynyas are needed to reduce the uncertainty in quantifying ice production in polynyas.
Resumo:
Turbulent surface fluxes of momentum and sensible and latent heat as well as surface temperature, air temperature, air humidity, and wind speed were measured by the German Falcon research aircraft over the marginal ice zone (MIZ) of the northern Baltic Sea and the Fram Strait. Applying the bulk formulas and the stability functions to the measurements, the roughness lengths for momentum z0, sensible heat zT, and latent heat zq were calculated. As mean values over a wide range of sea ice conditions, we obtain z0 = 5 � 10�4 m, zT = 1 � 10�8 m, and zq = 1 � 10�7 m. These correspond to the following mean values (± standard deviations) of neutral transfer coefficients reduced to 10 m height, CDN10 = (1.9 ± 0.8) � 10�3, CHN10 = (0.9 ± 0.3) � 10�3, and CEN10 = (1.0 ± 0.2) � 10�3. An average ratio of z0/zT � 104 was observed over the range of 10�6 m < z0 < 10�2 m and differs from previously published results over compact sea ice (10�1 < z0/zT < 103). Other observational results over heterogeneous sea ice do not exist. However, our z0/zT ratio approximately agrees with observations over heterogeneous land surfaces. Flux parameterizations based on commonly used roughness lengths ratios (z0 = zT = zq) overestimate the surface heat fluxes compared to our measurements by more than 100%.
Resumo:
There is growing evidence that the rate of warming is amplified with elevation, such that high-mountain environments experience more rapid changes in temperature than environments at lower elevations. Elevation-dependent warming (EDW) can accelerate the rate of change in mountain ecosystems, cryospheric systems, hydrological regimes and biodiversity. Here we review important mechanisms that contribute towards EDW: snow albedo and surface-based feedbacks; water vapour changes and latent heat release; surface water vapour and radiative flux changes; surface heat loss and temperature change; and aerosols. All lead to enhanced warming with elevation (or at a critical elevation), and it is believed that combinations of these mechanisms may account for contrasting regional patterns of EDW. We discuss future needs to increase knowledge of mountain temperature trends and their controlling mechanisms through improved observations, satellite-based remote sensing and model simulations.