168 resultados para octavia butler
Assessing and understanding the impact of stratospheric dynamics and variability on the earth system
Resumo:
Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.
Resumo:
Rationale: Flavonoid-rich foods have been shown to be able to reverse age-related cognitive deficits in memory and learning in both animals and humans. However, to date, there have been only a limited number of studies investigating the effects of flavonoid-rich foods on cognition in young/healthy animals. Objectives: The aim of this study was to investigate the effects of a blueberry-rich diet in young animals using a spatial working memory paradigm, the delayed non-match task, using an eight-arm radial maze. Furthermore, the mechanisms underlying such behavioural effects were investigated. Results: We show that a 7-week supplementation with a blueberry diet (2 % w/w) improves the spatial memory performance of young rats (2 months old). Blueberry-fed animals also exhibited a faster rate of learning compared to those on the control diet. These behavioural outputs were accompanied by the activation of extracellular signal-related kinase (ERK1/2), increases in total cAMP-response element binding protein (CREB) and elevated levels of pro- and mature brain-derived neurotrophic factor (BDNF) in the hippocampus. Changes in hippocampal CREB correlated well with memory performance. Further regional analysis of BDNF gene expression in the hippocampus revealed a specific increase in BDNF mRNA in the dentate gyrus and CA1 areas of hippocampi of blueberry-fed animals. Conclusions: The present study suggests that consumption of flavonoid-rich blueberries has a positive impact on spatial learning performance in young healthy animals, and these improvements are linked to the activation of ERK–CREB– BDNF pathway in the hippocampus.
Resumo:
1. Species-based indices are frequently employed as surrogates for wider biodiversity health and measures of environmental condition. Species selection is crucial in determining an indicators metric value and hence the validity of the interpretation of ecosystem condition and function it provides, yet an objective process to identify appropriate indicator species is frequently lacking. 2. An effective indicator needs to (i) be representative, reflecting the status of wider biodiversity; (ii) be reactive, acting as early-warning systems for detrimental changes in environmental conditions; (iii) respond to change in a predictable way. We present an objective, niche-based approach for species' selection, founded on a coarse categorisation of species' niche space and key resource requirements, which ensures the resultant indicator has these key attributes. 3. We use UK farmland birds as a case study to demonstrate this approach, identifying an optimal indicator set containing 12 species. In contrast to the 19 species included in the farmland bird index (FBI), a key UK biodiversity indicator that contributes to one of the UK Government's headline indicators of sustainability, the niche space occupied by these species fully encompasses that occupied by the wider community of 62 species. 4. We demonstrate that the response of these 12 species to land-use change is a strong correlate to that of the wider farmland bird community. Furthermore, the temporal dynamics of the index based on their population trends closely matches the population dynamics of the wider community. However, in both analyses, the magnitude of the change in our indicator was significantly greater, allowing this indicator to act as an early-warning system. 5. Ecological indicators are embedded in environmental management, sustainable development and biodiversity conservation policy and practice where they act as metrics against which progress towards national, regional and global targets can be measured. Adopting this niche-based approach for objective selection of indicator species will facilitate the development of sensitive and representative indices for a range of taxonomic groups, habitats and spatial scales.
Resumo:
Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or ‘ad hoc’ goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention – self-affirmation (SA) – that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual–spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive– and social–psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours.
Resumo:
Despite the importance of a thorough understanding of the effect of synthetic fertiliser on insect population dynamics, existing literature is conflicting and an area of intense debate. Here, a categorical random-effects meta-analysis and a vote count meta-analysis are employed to examine the effects of nitrogen(N), phosphorus (P), potassium (K) and NPK fertiliser on insect population dynamics. In agreement with the general consensus, insects were found to respond positively, overall, to fertilisers. Sucking insects showed a much stronger response to fertilisers than chewing insects. The environment in which a study is conducted can have a marked effect on insect responses to fertiliser, with natural environments showing the potential for buffering effects of nitrogen fertilisers in particular. As well as highlighting the potential shortfall in the amount of research investigating particularly the effects of potassium and phosphorus, this study provides an invaluable flag post in the ongoing research investigating fertiliser effects on ecosystems.
Resumo:
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by ptosis, dysphagia and proximal limb weakness. Autosomal-dominant OPMD is caused by a short (GCG)8–13 expansions within the first exon of the poly(A)-binding protein nuclear 1 gene (PABPN1), leading to an expanded polyalanine tract in the mutated protein. Expanded PABPN1 forms insoluble aggregates in the nuclei of skeletal muscle fibres. In order to gain insight into the different physiological processes affected in OPMD muscles, we have used a transgenic mouse model of OPMD (A17.1) and performed transcriptomic studies combined with a detailed phenotypic characterization of this model at three time points. The transcriptomic analysis revealed a massive gene deregulation in the A17.1 mice, among which we identified a significant deregulation of pathways associated with muscle atrophy. Using a mathematical model for progression, we have identified that one-third of the progressive genes were also associated with muscle atrophy. Functional and histological analysis of the skeletal muscle of this mouse model confirmed a severe and progressive muscular atrophy associated with a reduction in muscle strength. Moreover, muscle atrophy in the A17.1 mice was restricted to fast glycolytic fibres, containing a large number of intranuclear inclusions (INIs). The soleus muscle and, in particular, oxidative fibres were spared, even though they contained INIs albeit to a lesser degree. These results demonstrate a fibre-type specificity of muscle atrophy in this OPMD model. This study improves our understanding of the biological pathways modified in OPMD to identify potential biomarkers and new therapeutic targets.