144 resultados para neural algorithm
Resumo:
The convergence speed of the standard Least Mean Square adaptive array may be degraded in mobile communication environments. Different conventional variable step size LMS algorithms were proposed to enhance the convergence speed while maintaining low steady state error. In this paper, a new variable step LMS algorithm, using the accumulated instantaneous error concept is proposed. In the proposed algorithm, the accumulated instantaneous error is used to update the step size parameter of standard LMS is varied. Simulation results show that the proposed algorithm is simpler and yields better performance than conventional variable step LMS.
Resumo:
This paper represents the first step in an on-going work for designing an unsupervised method based on genetic algorithm for intrusion detection. Its main role in a broader system is to notify of an unusual traffic and in that way provide the possibility of detecting unknown attacks. Most of the machine-learning techniques deployed for intrusion detection are supervised as these techniques are generally more accurate, but this implies the need of labeling the data for training and testing which is time-consuming and error-prone. Hence, our goal is to devise an anomaly detector which would be unsupervised, but at the same time robust and accurate. Genetic algorithms are robust and able to avoid getting stuck in local optima, unlike the rest of clustering techniques. The model is verified on KDD99 benchmark dataset, generating a solution competitive with the solutions of the state-of-the-art which demonstrates high possibilities of the proposed method.
Resumo:
This paper formally derives a new path-based neural branch prediction algorithm (FPP) into blocks of size two for a lower hardware solution while maintaining similar input-output characteristic to the algorithm. The blocked solution, here referred to as B2P algorithm, is obtained using graph theory and retiming methods. Verification approaches were exercised to show that prediction performances obtained from the FPP and B2P algorithms differ within one mis-prediction per thousand instructions using a known framework for branch prediction evaluation. For a chosen FPGA device, circuits generated from the B2P algorithm showed average area savings of over 25% against circuits for the FPP algorithm with similar time performances thus making the proposed blocked predictor superior from a practical viewpoint.
Resumo:
An unaltered rearrangement of the original computation of a neural based predictor at the algorithmic level is introduced as a new organization. Its FPGA implementation generates circuits that are 1.7 faster than a direct implementation of the original algorithm. This faster clock rate allows to implement predictors with longer history lengths using the nearly the same hardware budget.
Resumo:
This paper develops cycle-level FPGA circuits of an organization for a fast path-based neural branch predictor Our results suggest that practical sizes of prediction tables are limited to around 32 KB to 64 KB in current FPGA technology due mainly to FPGA area of logic resources to maintain the tables. However the predictor scales well in terms of prediction speed. Table sizes alone should not be used as the only metric for hardware budget when comparing neural-based predictor to predictors of totally different organizations. This paper also gives early evidence to shift the attention on to the recovery from mis-prediction latency rather than on prediction latency as the most critical factor impacting accuracy of predictions for this class of branch predictors.
Resumo:
This paper proposes a new iterative algorithm for OFDM joint data detection and phase noise (PHN) cancellation based on minimum mean square prediction error. We particularly highlight the problem of "overfitting" such that the iterative approach may converge to a trivial solution. Although it is essential for this joint approach, the overfitting problem was relatively less studied in existing algorithms. In this paper, specifically, we apply a hard decision procedure at every iterative step to overcome the overfitting. Moreover, compared with existing algorithms, a more accurate Pade approximation is used to represent the phase noise, and finally a more robust and compact fast process based on Givens rotation is proposed to reduce the complexity to a practical level. Numerical simulations are also given to verify the proposed algorithm.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward constrained regression manner. The leave-one-out (LOO) test score is used for kernel selection. The jackknife parameter estimator subject to positivity constraint check is used for the parameter estimation of a single parameter at each forward step. As such the proposed approach is simple to implement and the associated computational cost is very low. An illustrative example is employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to that of the classical Parzen window estimate.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
Biological Crossover occurs during the early stages of meiosis. During this process the chromosomes undergoing crossover are synapsed together at a number of homogenous sequence sections, it is within such synapsed sections that crossover occurs. The SVLC (Synapsing Variable Length Crossover) Algorithm recurrently synapses homogenous genetic sequences together in order of length. The genomes are considered to be flexible with crossover only being permitted within the synapsed sections. Consequently, common sequences are automatically preserved with only the genetic differences being exchanged, independent of the length of such differences. In addition to providing a rationale for variable length crossover it also provides a genotypic similarity metric for variable length genomes enabling standard niche formation techniques to be utilised. In a simple variable length test problem the SVLC algorithm outperforms current variable length crossover techniques.
Resumo:
In the United Kingdom and in fact throughout Europe, the chosen standard for digital terrestrial television is the European Telecommunications Standards Institute (ETSI) ETN 300 744 also known as Digital Video Broadcasting - Terrestrial (DVB-T). The modulation method under this standard was chosen to be Orthogonal Frequency Division Multiplex (0FD4 because of the apparent inherent capability for withstanding the effects of multipath. Within the DVB-T standard, the addition of pilot tones was included that can be used for many applications such as channel impulse response estimation or local oscillator phase and frequency offset estimation. This paper demonstrates a technique for an estimation of the relative path attenuation of a single multipath signal that can be used as a simple firmware update for a commercial set-top box. This technique can be used to help eliminate the effects of multipath(1).
Resumo:
This paper describes a region-based algorithm for deriving a concise description of a first order optical flow field. The algorithm described achieves performance improvements over existing algorithms without compromising the accuracy of the flow field values calculated. These improvements are brought about by not computing the entire flow field between two consecutive images, but by considering only the flow vectors of a selected subset of the images. The algorithm is presented in the context of a project to balance a bipedal robot using visual information.