103 resultados para mathematical regression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical ability is heritable, but few studies have directly investigated its molecular genetic basis. Here we aimed to identify specific genetic contributions to variation in mathematical ability. We carried out a genome wide association scan using pooled DNA in two groups of U.K. samples, based on end of secondary/high school national academic exam achievement: high (n = 419) versus low (n = 183) mathematical ability while controlling for their verbal ability. Significant differences in allele frequencies between these groups were searched for in 906,600 SNPs using the Affymetrix GeneChip Human Mapping version 6.0 array. After meeting a threshold of p<1.5×10-5, 12 SNPs from the pooled association analysis were individually genotyped in 542 of the participants and analyzed to validate the initial associations (lowest p-value 1.14 ×10-6). In this analysis, one of the SNPs (rs789859) showed significant association after Bonferroni correction, and four (rs10873824, rs4144887, rs12130910 rs2809115) were nominally significant (lowest p-value 3.278 × 10-4). Three of the SNPs of interest are located within, or near to, known genes (FAM43A, SFT2D1, C14orf64). The SNP that showed the strongest association, rs789859, is located in a region on chromosome 3q29 that has been previously linked to learning difficulties and autism. rs789859 lies 1.3 kbp downstream of LSG1, and 700 bp upstream of FAM43A, mapping within the potential promoter/regulatory region of the latter. To our knowledge, this is only the second study to investigate the association of genetic variants with mathematical ability, and it highlights a number of interesting markers for future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem cells (NSCs) are early precursors of neuronal and glial cells. NSCs are capable of generating identical progeny through virtually unlimited numbers of cell divisions (cell proliferation), producing daughter cells committed to differentiation. Nuclear factor kappa B (NF-kappaB) is an inducible, ubiquitous transcription factor also expressed in neurones, glia and neural stem cells. Recently, several pieces of evidence have been provided for a central role of NF-kappaB in NSC proliferation control. Here, we propose a novel mathematical model for NF-kappaB-driven proliferation of NSCs. We have been able to reconstruct the molecular pathway of activation and inactivation of NF-kappaB and its influence on cell proliferation by a system of nonlinear ordinary differential equations. Then we use a combination of analytical and numerical techniques to study the model dynamics. The results obtained are illustrated by computer simulations and are, in general, in accordance with biological findings reported by several independent laboratories. The model is able to both explain and predict experimental data. Understanding of proliferation mechanisms in NSCs may provide a novel outlook in both potential use in therapeutic approaches, and basic research as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical regression methods take vectors as covariates and estimate the corresponding vectors of regression parameters. When addressing regression problems on covariates of more complex form such as multi-dimensional arrays (i.e. tensors), traditional computational models can be severely compromised by ultrahigh dimensionality as well as complex structure. By exploiting the special structure of tensor covariates, the tensor regression model provides a promising solution to reduce the model’s dimensionality to a manageable level, thus leading to efficient estimation. Most of the existing tensor-based methods independently estimate each individual regression problem based on tensor decomposition which allows the simultaneous projections of an input tensor to more than one direction along each mode. As a matter of fact, multi-dimensional data are collected under the same or very similar conditions, so that data share some common latent components but can also have their own independent parameters for each regression task. Therefore, it is beneficial to analyse regression parameters among all the regressions in a linked way. In this paper, we propose a tensor regression model based on Tucker Decomposition, which identifies not only the common components of parameters across all the regression tasks, but also independent factors contributing to each particular regression task simultaneously. Under this paradigm, the number of independent parameters along each mode is constrained by a sparsity-preserving regulariser. Linked multiway parameter analysis and sparsity modeling further reduce the total number of parameters, with lower memory cost than their tensor-based counterparts. The effectiveness of the new method is demonstrated on real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use sunspot group observations from the Royal Greenwich Observatory (RGO) to investigate the effects of intercalibrating data from observers with different visual acuities. The tests are made by counting the number of groups RB above a variable cut-off threshold of observed total whole-spot area (uncorrected for foreshortening) to simulate what a lower acuity observer would have seen. The synthesised annual means of RB are then re-scaled to the full observed RGO group number RA using a variety of regression techniques. It is found that a very high correlation between RA and RB (rAB > 0.98) does not prevent large errors in the intercalibration (for example sunspot maximum values can be over 30 % too large even for such levels of rAB). In generating the backbone sunspot number (RBB), Svalgaard and Schatten (2015, this issue) force regression fits to pass through the scatter plot origin which generates unreliable fits (the residuals do not form a normal distribution) and causes sunspot cycle amplitudes to be exaggerated in the intercalibrated data. It is demonstrated that the use of Quantile-Quantile (“Q  Q”) plots to test for a normal distribution is a useful indicator of erroneous and misleading regression fits. Ordinary least squares linear fits, not forced to pass through the origin, are sometimes reliable (although the optimum method used is shown to be different when matching peak and average sunspot group numbers). However, other fits are only reliable if non-linear regression is used. From these results it is entirely possible that the inflation of solar cycle amplitudes in the backbone group sunspot number as one goes back in time, relative to related solar-terrestrial parameters, is entirely caused by the use of inappropriate and non-robust regression techniques to calibrate the sunspot data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical relationships between Scoring Parameters can be used in Economic Scoring Formulas (ESF) in tendering to distribute the score among bidders in the economic part of a proposal. Each contracting authority must set an ESF when publishing tender specifications and the strategy of each bidder will differ depending on the ESF selected and the weight of the overall proposal scoring. This paper introduces the various mathematical relationships and density distributions that describe and inter-relate not only the main Scoring Parameters but the main Forecasting Parameters in any capped tender (those whose price is upper-limited). Forecasting Parameters, as variables that can be known in advance before the deadline of a tender is reached, together with Scoring Parameters constitute the basis of a future Bid Tender Forecasting Model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The congruential rule advanced by Graves for polarization basis transformation of the radar backscatter matrix is now often misinterpreted as an example of consimilarity transformation. However, consimilarity transformations imply a physically unrealistic antilinear time-reversal operation. This is just one of the approaches found in literature to the description of transformations where the role of conjugation has been misunderstood. In this paper, the different approaches are examined in particular in respect to the role of conjugation. In order to justify and correctly derive the congruential rule for polarization basis transformation and properly place the role of conjugation, the origin of the problem is traced back to the derivation of the antenna height from the transmitted field. In fact, careful consideration of the role played by the Green’s dyadic operator relating the antenna height to the transmitted field shows that, under general unitary basis transformation, it is not justified to assume a scalar relationship between them. Invariance of the voltage equation shows that antenna states and wave states must in fact lie in dual spaces, a distinction not captured in conventional Jones vector formalism. Introducing spinor formalism, and with the use of an alternate spin frame for the transmitted field a mathematically consistent implementation of the directional wave formalism is obtained. Examples are given comparing the wider generality of the congruential rule in both active and passive transformations with the consimilarity rule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SHIMMER (Soil biogeocHemIcal Model for Microbial Ecosystem Response) is a new numerical modelling framework designed to simulate microbial dynamics and biogeochemical cycling during initial ecosystem development in glacier forefield soils. However, it is also transferable to other extreme ecosystem types (such as desert soils or the surface of glaciers). The rationale for model development arises from decades of empirical observations in glacier forefields, and enables a quantitative and process focussed approach. Here, we provide a detailed description of SHIMMER, test its performance in two case study forefields: the Damma Glacier (Switzerland) and the Athabasca Glacier (Canada) and analyse sensitivity to identify the most sensitive and unconstrained model parameters. Results show that the accumulation of microbial biomass is highly dependent on variation in microbial growth and death rate constants, Q10 values, the active fraction of microbial biomass and the reactivity of organic matter. The model correctly predicts the rapid accumulation of microbial biomass observed during the initial stages of succession in the forefields of both the case study systems. Primary production is responsible for the initial build-up of labile substrate that subsequently supports heterotrophic growth. However, allochthonous contributions of organic matter, and nitrogen fixation, are important in sustaining this productivity. The development and application of SHIMMER also highlights aspects of these systems that require further empirical research: quantifying nutrient budgets and biogeochemical rates, exploring seasonality and microbial growth and cell death. This will lead to increased understanding of how glacier forefields contribute to global biogeochemical cycling and climate under future ice retreat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model for Banana Xanthomonas Wilt (BXW) spread by insect is presented. The model incorporates inflorescence infection and vertical transmission from the mother corm to attached suckers, but not tool-based transmission by humans. Expressions for the basic reproduction number R0 are obtained and it is verified that disease persists, at a unique endemic level, when R0 > 1. From sensitivity analysis, inflorescence infection rate and roguing rate were the parameters with most influence on disease persistence and equilibrium level. Vertical transmission parameters had less effect on persistence threshold values. Parameters were approximately estimated from field data. The model indicates that single stem removal is a feasible approach to eradication if spread is mainly via inflorescence infection. This requires continuous surveillance and debudding such that a 50% reduction in inflorescence infection and 2–3 weeks interval of surveillance would eventually lead to full recovery of banana plantations and hence improved production.