94 resultados para log-linear models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the prospect of exascale computing, computational methods requiring only local data become especially attractive. Consequently, the typical domain decomposition of atmospheric models means horizontally-explicit vertically-implicit (HEVI) time-stepping schemes warrant further attention. In this analysis, Runge-Kutta implicit-explicit schemes from the literature are analysed for their stability and accuracy using a von Neumann stability analysis of two linear systems. Attention is paid to the numerical phase to indicate the behaviour of phase and group velocities. Where the analysis is tractable, analytically derived expressions are considered. For more complicated cases, amplification factors have been numerically generated and the associated amplitudes and phase diagnosed. Analysis of a system describing acoustic waves has necessitated attributing the three resultant eigenvalues to the three physical modes of the system. To do so, a series of algorithms has been devised to track the eigenvalues across the frequency space. The result enables analysis of whether the schemes exactly preserve the non-divergent mode; and whether there is evidence of spurious reversal in the direction of group velocities or asymmetry in the damping for the pair of acoustic modes. Frequency ranges that span next-generation high-resolution weather models to coarse-resolution climate models are considered; and a comparison is made of errors accumulated from multiple stability-constrained shorter time-steps from the HEVI scheme with a single integration from a fully implicit scheme over the same time interval. Two schemes, “Trap2(2,3,2)” and “UJ3(1,3,2)”, both already used in atmospheric models, are identified as offering consistently good stability and representation of phase across all the analyses. Furthermore, according to a simple measure of computational cost, “Trap2(2,3,2)” is the least expensive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface-air-temperature change is nonlinear in Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere-Ocean General Circulation Models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined the climate feedback parameter becomes significantly (95% confidence) less negative – i.e. the effective climate sensitivity increases – as time passes. Cloud feedback parameters show the largest changes. In the AOGCM-mean approximately 60% of the change in feedback parameter comes from the topics (30N-30S). An important region involved is the tropical Pacific where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea-surface-temperatures and sea-ice prescribed from its AOGCM counterpart each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. We also demonstrate that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but non-zero change in net radiation at the top of the atmosphere (~ -0.5 Wm-2 in HadCM3).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken