93 resultados para insolvent trading
Resumo:
This paper seeks to increase the understanding of the performance implications for investors who choose to combine an unlisted real estate portfolio (in this case German Spezialfonds) with a (global) listed real estate element. We call this a “blended” approach to real estate allocations. For the avoidance of doubt, in this paper we are dealing purely with real estate equity (listed and unlisted) allocations, and do not incorporate real estate debt (listed or unlisted) or direct property into the process. A previous paper (Moss and Farrelly 2014) showed the benefits of the blended approach as it applied to UK Defined Contribution Pension Schemes. The catalyst for this paper has been the recent attention focused on German pension fund allocations, which have a relatively low (real estate) equity content, and a high bond content. We have used the MSCI Spezialfonds Index as a proxy for domestic German institutional real estate allocations, and the EPRA Global Developed Index as a proxy for a global listed real estate allocation. We also examine whether a rules based trading strategy, in this case Trend Following, can improve the risk adjusted returns above those of a simple buy and hold strategy for our sample period 2004-2015. Our findings are that by blending a 30% global listed portfolio with a 70% allocation (as opposed to a typical 100% weighting) to Spezialfonds, the real estate allocation returns increase from 2.88% p.a. to 5.42% pa. Volatility increases, but only to 6.53%., but there is a noticeable impact on maximum drawdown which increases to 19.4%. By using a Trend Following strategy raw returns are improved from 2.88% to 6.94% p.a. , The Sharpe Ratio increases from 1.05 to 1.49 and the Maximum Drawdown ratio is now only 1.83% compared to 19.4% using a buy and hold strategy . Finally, adding this (9%) real estate allocation to a mixed asset portfolio allocation typical for German pension funds there is an improvement in both the raw return (from 7.66% to 8.28%) and the Sharpe Ratio (from 0.91 to 0.98).
Resumo:
Liquidity is a fundamentally important facet of investments, but there is no single measure that quantifies it perfectly. Instead, a range of measures are necessary to capture different dimensions of liquidity such as the breadth and depth of markets, the costs of transacting, the speed with which transactions can occur and the resilience of prices to trading activity. This article considers how different dimensions have been measured in financial markets and for various forms of real estate investment. The purpose of this exercise is to establish the range of liquidity measures that could be used for real estate investments before considering which measures and questions have been investigated so far. Most measures reviewed here are applicable to public real estate, but not all can be applied to private real estate assets or funds. Use of a broader range of liquidity measures could help real estate researchers tackle issues such as quantification of illiquidity premiums for the real estate asset class or different types of real estate, and how liquidity differences might be incorporated into portfolio allocation models.
Resumo:
For the last few years, I have been working on an extensive digital model of ancient Rome as it appeared in the early 4th Century AD. This sort of visualisation lends itself to many applications in diverse fields: I am currently using it for research work into illumination and sightlines in the ancient city, have licensed it for broadcast in TV documentaries and publication in magazines, and am working with a computer games studio to turn it into an online game where players will be able to walk round the streets and buildings of the entire city (when not engaged in trading with or assassinating one another). Later this year I will be making a free online course, or MOOC, about the architecture of ancient Rome, which will largely be illustrated by this model.