135 resultados para errors-in-variables model
Resumo:
FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).
Resumo:
The assimilation of observations with a forecast is often heavily influenced by the description of the error covariances associated with the forecast. When a temperature inversion is present at the top of the boundary layer (BL), a significant part of the forecast error may be described as a vertical positional error (as opposed to amplitude error normally dealt with in data assimilation). In these cases, failing to account for positional error explicitly is shown t o r esult in an analysis for which the inversion structure is erroneously weakened and degraded. In this article, a new assimilation scheme is proposed to explicitly include the positional error associated with an inversion. This is done through the introduction of an extra control variable to allow position errors in the a priori to be treated simultaneously with the usual amplitude errors. This new scheme, referred to as the ‘floating BL scheme’, is applied to the one-dimensional (vertical) variational assimilation of temperature. The floating BL scheme is tested with a series of idealised experiments a nd with real data from radiosondes. For each idealised experiment, the floating BL scheme gives an analysis which has the inversion structure and position in agreement with the truth, and outperforms the a ssimilation which accounts only for forecast a mplitude error. When the floating BL scheme is used to assimilate a l arge sample of radiosonde data, its ability to give an analysis with an inversion height in better agreement with that observed is confirmed. However, it is found that the use of Gaussian statistics is an inappropriate description o f t he error statistics o f t he extra c ontrol variable. This problem is alleviated by incorporating a non-Gaussian description of the new control variable in the new scheme. Anticipated challenges in implementing the scheme operationally are discussed towards the end of the article.
Resumo:
In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.
Resumo:
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
Northern Hemisphere tropical cyclone (TC) activity is investigated in multiyear global climate simulations with theECMWFIntegrated Forecast System (IFS) at 10-km resolution forced by the observed records of sea surface temperature and sea ice. The results are compared to analogous simulationswith the 16-, 39-, and 125-km versions of the model as well as observations. In the North Atlantic, mean TC frequency in the 10-km model is comparable to the observed frequency, whereas it is too low in the other versions. While spatial distributions of the genesis and track densities improve systematically with increasing resolution, the 10-km model displays qualitatively more realistic simulation of the track density in the western subtropical North Atlantic. In the North Pacific, the TC count tends to be too high in thewest and too low in the east for all resolutions. These model errors appear to be associated with the errors in the large-scale environmental conditions that are fairly similar in this region for all model versions. The largest benefits of the 10-km simulation are the dramatically more accurate representation of the TC intensity distribution and the structure of the most intense storms. The model can generate a supertyphoon with a maximum surface wind speed of 68.4 m s21. The life cycle of an intense TC comprises intensity fluctuations that occur in apparent connection with the variations of the eyewall/rainband structure. These findings suggest that a hydrostatic model with cumulus parameterization and of high enough resolution could be efficiently used to simulate the TC intensity response (and the associated structural changes) to future climate change.
Resumo:
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.
Resumo:
The mechanisms involved in Atlantic meridional overturning circulation (AMOC) decadal variability and predictability over the last 50 years are analysed in the IPSL–CM5A–LR model using historical and initialised simulations. The initialisation procedure only uses nudging towards sea surface temperature anomalies with a physically based restoring coefficient. When compared to two independent AMOC reconstructions, both the historical and nudged ensemble simulations exhibit skill at reproducing AMOC variations from 1977 onwards, and in particular two maxima occurring respectively around 1978 and 1997. We argue that one source of skill is related to the large Mount Agung volcanic eruption starting in 1963, which reset an internal 20-year variability cycle in the North Atlantic in the model. This cycle involves the East Greenland Current intensity, and advection of active tracers along the subpolar gyre, which leads to an AMOC maximum around 15 years after the Mount Agung eruption. The 1997 maximum occurs approximately 20 years after the former one. The nudged simulations better reproduce this second maximum than the historical simulations. This is due to the initialisation of a cooling of the convection sites in the 1980s under the effect of a persistent North Atlantic oscillation (NAO) positive phase, a feature not captured in the historical simulations. Hence we argue that the 20-year cycle excited by the 1963 Mount Agung eruption together with the NAO forcing both contributed to the 1990s AMOC maximum. These results support the existence of a 20-year cycle in the North Atlantic in the observations. Hindcasts following the CMIP5 protocol are launched from a nudged simulation every 5 years for the 1960–2005 period. They exhibit significant correlation skill score as compared to an independent reconstruction of the AMOC from 4-year lead-time average. This encouraging result is accompanied by increased correlation skills in reproducing the observed 2-m air temperature in the bordering regions of the North Atlantic as compared to non-initialized simulations. To a lesser extent, predicted precipitation tends to correlate with the nudged simulation in the tropical Atlantic. We argue that this skill is due to the initialisation and predictability of the AMOC in the present prediction system. The mechanisms evidenced here support the idea of volcanic eruptions as a pacemaker for internal variability of the AMOC. Together with the existence of a 20-year cycle in the North Atlantic they propose a novel and complementary explanation for the AMOC variations over the last 50 years.
Resumo:
The cold equatorial SST bias in the tropical Pacific that is persistent in many coupled OAGCMs severely impacts the fidelity of the simulated climate and variability in this key region, such as the ENSO phenomenon. The classical bias analysis in these models usually concentrates on multi-decadal to centennial time series needed to obtain statistically robust features. Yet, this strategy cannot fully explain how the models errors were generated in the first place. Here, we use seasonal re-forecasts (hindcasts) to track back the origin of this cold bias. As such hindcasts are initialized close to observations, the transient drift leading to the cold bias can be analyzed to distinguish pre-existing errors from errors responding to initial ones. A time sequence of processes involved in the advent of the final mean state errors can then be proposed. We apply this strategy to the ENSEMBLES-FP6 project multi-model hindcasts of the last decades. Four of the five AOGCMs develop a persistent equatorial cold tongue bias within a few months. The associated systematic errors are first assessed separately for the warm and cold ENSO phases. We find that the models are able to reproduce either El Niño or La Niña close to observations, but not both. ENSO composites then show that the spurious equatorial cooling is maximum for El Niño years for the February and August start dates. For these events and at this time of the year, zonal wind errors in the equatorial Pacific are present from the beginning of the simulation and are hypothesized to be at the origin of the equatorial cold bias, generating too strong upwelling conditions. The systematic underestimation of the mixed layer depth in several models can also amplify the growth of the SST bias. The seminal role of these zonal wind errors is further demonstrated by carrying out ocean-only experiments forced by the AOCGCMs daily 10-meter wind. In a case study, we show that for several models, this forcing is sufficient to reproduce the main SST error patterns seen after 1 month in the AOCGCM hindcasts.
Resumo:
Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.
Resumo:
In Part I of this study it was shown that moving from a moisture-convergent- to a relative-humidity-dependent organized entrainment rate in the formulation for deep convection was responsible for significant advances in the simulation of the Madden – Julian Oscillation (MJO) in the ECMWF model. However, the application of traditional MJO diagnostics were not adequate to understand why changing the control on convection had such a pronounced impact on the representation of the MJO. In this study a set of process-based diagnostics are applied to the hindcast experiments described in Part I to identify the physical mechanisms responsible for the advances in MJO simulation. Increasing the sensitivity of the deep convection scheme to environmental moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid troposphere. Due to the modified precipitation – moisture relationship more moisture is able to build up, which effectively preconditions the tropical atmosphere for the t ransition t o d eep convection. R esults from this study suggest that a tropospheric moisture control on convection is key to simulating the interaction between the convective heating and the large-scale wave forcing associated with the MJO.
Resumo:
Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.
Resumo:
The interannual variability of the stratospheric polar vortex during winter in both hemispheres is observed to correlate strongly with the phase of the quasi-biennial oscillation (QBO) in tropical stratospheric winds. It follows that the lack of a spontaneously generated QBO in most atmospheric general circulation models (AGCMs) adversely affects the nature of polar variability in such models. This study examines QBO–vortex coupling in an AGCM in which a QBO is spontaneously induced by resolved and parameterized waves. The QBO–vortex coupling in the AGCM compares favorably to that seen in reanalysis data [from the 40-yr ECMWF Re-Analysis (ERA-40)], provided that careful attention is given to the definition of QBO phase. A phase angle representation of the QBO is employed that is based on the two leading empirical orthogonal functions of equatorial zonal wind vertical profiles. This yields a QBO phase that serves as a proxy for the vertical structure of equatorial winds over the whole depth of the stratosphere and thus provides a means of subsampling the data to select QBO phases with similar vertical profiles of equatorial zonal wind. Using this subsampling, it is found that the QBO phase that induces the strongest polar vortex response in early winter differs from that which induces the strongest late-winter vortex response. This is true in both hemispheres and for both the AGCM and ERA-40. It follows that the strength and timing of QBO influence on the vortex may be affected by the partial seasonal synchronization of QBO phase transitions that occurs both in observations and in the model. This provides a mechanism by which changes in the strength of QBO–vortex correlations may exhibit variability on decadal time scales. In the model, such behavior occurs in the absence of external forcings or interannual variations in sea surface temperatures.
Resumo:
Energy fluxes for polar regions are examined for two 30-year periods, representing the end of the 20th and 21st centuries, using data from high resolution simulations with the ECHAM5 climate model. The net radiation to space for the present climate agrees well with data from the Clouds and the Earth’s Radiant Energy System (CERES) over the northern polar region but shows an underestimation in planetary albedo for the southern polar region. This suggests there are systematic errors in the atmospheric circulation or in the net surface energy fluxes in the southern polar region. The simulation of the future climate is based on the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. The total energy transport is broadly the same for the two 30 year periods, but there is an increase in the moist energy transport of the order of 6 W m−2 and a corresponding reduction in the dry static energy. For the southern polar region the proportion of moist energy transport is larger and the dry static energy correspondingly smaller for both periods. The results suggest a possible mechanism for the warming of the Arctic that is discussed. Changes between the 20th and 21st centuries in the northern polar region show the net ocean surface radiation flux in summer increases ~18W m−2 (24%). For the southern polar region the response is different as there is a decrease in surface solar radiation. We suggest that this is caused by changes in cloudiness associated with the poleward migration of the storm tracks.
Resumo:
ECHO is a new global coupled ocean-atmosphere general circulation model (GCM), consisting of the Hamburg version of the European Centre atmospheric GCM (ECHAM) and the Hamburg Primitive Equation ocean GCM (HOPE). We performed a 20-year integration with ECHO. Climate drift is significant, but typical annual mean errors in sea surface temperature (SST) do not exceed 2° in the open oceans. Near the boundaries, however, SST errors are considerably larger. The coupled model simulates an irregular ENSO cycle in the tropical Pacific, with spatial patterns similar to those observed. The variability, however, is somewhat weaker relative to observations. ECHO also simulates significant interannual variability in mid-latitudes. Consistent with observations, variability over the North Pacific can be partly attributed to remote forcing from the tropics. In contrast, the interannual variability over the North Atlantic appears to be generated locally.