175 resultados para equilibrium selection
Resumo:
This paper deals with the selection of centres for radial basis function (RBF) networks. A novel mean-tracking clustering algorithm is described as a way in which centers can be chosen based on a batch of collected data. A direct comparison is made between the mean-tracking algorithm and k-means clustering and it is shown how mean-tracking clustering is significantly better in terms of achieving an RBF network which performs accurate function modelling.
Resumo:
Several models have proposed that an action can be imitated via one of two routes: a direct visuospatial route, which can in principle mediate imitation of both meaningful (MF) and meaningless (ML) actions, and an indirect semantic route, which can be used only for MF actions. The present study investigated whether selection between the direct and indirect routes is strategic or stimulus driven. Tessari and Rumiati (J Exp Psychol Hum Percept Perform 30:1107–1116, 2004) have previously shown, using accuracy measures, that imitation of MF actions is superior to imitation of ML actions when the two action types are presented in separate blocks, and that the advantage of MF over ML items is smaller or absent when they are presented in mixed blocks. We first replicated this finding using an automated reaction time (RT), as well as accuracy, measure. We then examined imitation of MF and ML actions in the mixed condition as a function of the action type presented in the previous trial and in relation to the number of previous test trials. These analyses showed that (1) for both action types, performance was worse immediately after ML than MF trials, and (2) even at the beginning of the mixed condition, responding to MF actions was no better than responding to ML items. These results suggest that the properties of the action stimulus play a substantial role in determining whether imitation is mediated by the direct or the indirect route, and that effects of block composition on imitation need not be generated through strategic switching between routes.
Resumo:
A simple self–contained theory is proposed for describing life cycles of convective systems as a discharge–recharge process. A closed description is derived for the dynamics of an ensemble of convective plumes based on an energy cycle. The system consists of prognostic equations for the cloud work function and the convective kinetic energy. The system can be closed by intro ducing a functional relationship between the convective kinetic energy and the cloud–base mass flux. The behaviour of this system is considered under a bulk simplification. Previous cloud–resolving mo delling as well as bulk statistical theories for ensemble convective systems suggest that a plausible relationship would be to assume that the convective kinetic energy is linearly proportional to the cloud–base mass flux. As a result, the system reduces to a nonlinear dynamical system with two dependent variables, the cloud–base mass flux and the cloud work function. The fully nonlinear solution of this system always represents a periodic cycle regardless of the initial condition under constant large–scale forcing. Importantly, the inclusion of energy dissipation in this model does not in itself lead the system to an equilibrium.