349 resultados para climate change,
Resumo:
A key reason for pessimism with respect to greenhouse gas emissions reduction relates to the ‘motivation problem’, whereby those who could make the biggest difference prima facie have the least incentive to act because they are most able to adapt: how can we motivate such people (and thereby everyone else) to accept, indeed to initiate, the changes to their lifestyles that are required for effective emissions reductions? This paper offers an account inspired by Rawls of the good of membership of ‘intergenerational cooperative union’ to achieve justice that provides a solution to the motivation problem.
Resumo:
We summarise the work of an interdisciplinary network set up to explore the impacts of climate change in the British Uplands. In this CR Special, the contributors present the state of knowledge and this introduction synthesises this knowledge and derives implications for decision makers. The Uplands are valued semi-natural habitats, providing ecosystem services that have historically been taken for granted. For example, peat soils, which are mostly found in the Uplands, contain around 50% of the terrestrial carbon in the UK. Land management continues to be a driver of ecosystem service delivery. Degraded and managed peatlands are subject to erosion and carbon loss with negative impacts on biodiversity, carbon storage and water quality. Climate change is already being experienced in British Uplands and is likely to exacerbate these pressures. Climate envelope models suggest as much as 50% of British Uplands and peatlands will be exposed to climate stress by the end of the 21st century under low and high emissions scenarios. However, process-based models of the response of organic soils to this climate stress do not give a consistent indication of what this will mean for soil carbon: results range from a very slight increase in uptake, through a clear decline, to a net carbon loss. Preserving existing peat stocks is an important climate mitigation strategy, even if new peat stops forming. Preserving upland vegetation cover is a key win–win management strategy that will reduce erosion and loss of soil carbon, and protect a variety of services such as the continued delivery of a high quality water resource.
Resumo:
A significant challenge in the prediction of climate change impacts on ecosystems and biodiversity is quantifying the sources of uncertainty that emerge within and between different models. Statistical species niche models have grown in popularity, yet no single best technique has been identified reflecting differing performance in different situations. Our aim was to quantify uncertainties associated with the application of 2 complimentary modelling techniques. Generalised linear mixed models (GLMM) and generalised additive mixed models (GAMM) were used to model the realised niche of ombrotrophic Sphagnum species in British peatlands. These models were then used to predict changes in Sphagnum cover between 2020 and 2050 based on projections of climate change and atmospheric deposition of nitrogen and sulphur. Over 90% of the variation in the GLMM predictions was due to niche model parameter uncertainty, dropping to 14% for the GAMM. After having covaried out other factors, average variation in predicted values of Sphagnum cover across UK peatlands was the next largest source of variation (8% for the GLMM and 86% for the GAMM). The better performance of the GAMM needs to be weighed against its tendency to overfit the training data. While our niche models are only a first approximation, we used them to undertake a preliminary evaluation of the relative importance of climate change and nitrogen and sulphur deposition and the geographic locations of the largest expected changes in Sphagnum cover. Predicted changes in cover were all small (generally <1% in an average 4 m2 unit area) but also highly uncertain. Peatlands expected to be most affected by climate change in combination with atmospheric pollution were Dartmoor, Brecon Beacons and the western Lake District.
Resumo:
We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple threshold models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean annual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively growing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.
Resumo:
Blanket peatlands are rain-fed mires that cover the landscape almost regardless of topography. The geographical extent of this type of peatland is highly sensitive to climate. We applied a global process-based bioclimatic envelope model, PeatStash, to predict the distribution of British blanket peatlands. The model captures the present areal extent (Kappa = 0.77) and is highly sensitive to both temperature and precipitation changes. When the model is run using the UKCIP02 climate projections for the time periods 2011–2040, 2041–2070 and 2071–2100, the geographical distribution of blanket peatlands gradually retreats towards the north and the west. In the UKCIP02 high emissions scenario for 2071–2100, the blanket peatland bioclimatic space is ~84% smaller than contemporary conditions (1961–1990); only parts of the west of Scotland remain inside this space. Increasing summer temperature is the main driver of the projected changes in areal extent. Simulations using 7 climate model outputs resulted in generally similar patterns of declining aereal extent of the bioclimatic space, although differing in degree. The results presented in this study should be viewed as a first step towards understanding the trends likely to affect the blanket peatland distribution in Great Britain. The eventual fate of existing blanket peatlands left outside their bioclimatic space remains uncertain.
Resumo:
Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated lobal warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre’s coupled climate–carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ‘RothC’ multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 GtC by 2100 in a climate change simulation compared with an 80 GtC decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model.
Resumo:
Geographic distributions of pathogens are the outcome of dynamic processes involving host availability, susceptibility and abundance, suitability of climate conditions, and historical contingency including evolutionary change. Distributions have changed fast and are changing fast in response to many factors, including climatic change. The response time of arable agriculture is intrinsically fast, but perennial crops and especially forests are unlikely to adapt easily. Predictions of many of the variables needed to predict changes in pathogen range are still rather uncertain, and their effects will be profoundly modified by changes elsewhere in the agricultural system, including both economic changes affecting growing systems and hosts and evolutionary changes in pathogens and hosts. Tools to predict changes based on environmental correlations depend on good primary data, which is often absent, and need to be checked against the historical record, which remains very poor for almost all pathogens. We argue that at present the uncertainty in predictions of change is so great that the important adaptive response is to monitor changes and to retain the capacity to innovate, both by access to economic capital with reasonably long-term rates of return and by retaining wide scientific expertise, including currently less fashionable specialisms.
Resumo:
In response to increasing atmospheric con- centrations of greenhouse gases, the rate of time- dependent climate change is determined jointly by the strength of climate feedbacks and the e�ciency of pro- cesses which remove heat from the surface into the deep ocean. This work examines the vertical heat transport processes in the ocean of the HADCM2 atmosphere± ocean general circulation model (AOGCM) in experi- ments with CO2 held constant (control) and increasing at 1% per year (anomaly). The control experiment shows that global average heat exchanges between the upper and lower ocean are dominated by the Southern Ocean, where heat is pumped downwards by the wind- driven circulation and di�uses upwards along sloping isopycnals. This is the reverse of the low-latitude balance used in upwelling±di�usion ocean models, the global average upward di�usive transport being against the temperature gradient. In the anomaly experiment, weakened convection at high latitudes leads to reduced diffusive and convective heat loss from the deep ocean, and hence to net heat uptake, since the advective heat input is less a�ected. Reduction of deep water produc- tion at high latitudes results in reduced upwelling of cold water at low latitudes, giving a further contribution to net heat uptake. On the global average, high-latitude processes thus have a controlling in¯uence. The impor- tant role of di�usion highlights the need to ensure that the schemes employed in AOGCMs give an accurate representation of the relevant sub-grid-scale processes.
Resumo:
This paper presents a preface to this Special Issue on the results of the QUEST-GSI (Global Scale Impacts) project on climate change impacts on catchment-scale water resources. A detailed description of the unified methodology, subsequently used in all studies in this issue, is provided. The project method involved running simulations of catchment-scale hydrology using a unified set of past and future climate scenarios, to enable a consistent analysis of the climate impacts around the globe. These scenarios include "policy-relevant" prescribed warming scenarios. This is followed by a synthesis of the key findings. Overall, the studies indicate that in most basins the models project substantial changes to river flow, beyond that observed in the historical record, but that in many cases there is considerable uncertainty in the magnitude and sign of the projected changes. The implications of this for adaptation activities are discussed.
Resumo:
We present a comparative analysis of projected impacts of climate change on river runoff from two types of distributed hydrological model, a global hydrological model (GHM) and catchment-scale hydrological models (CHM). Analyses are conducted for six catchments that are global in coverage and feature strong contrasts in spatial scale as well as climatic and development conditions. These include the Liard (Canada), Mekong (SE Asia), Okavango (SW Africa), Rio Grande (Brazil), Xiangu (China) and Harper's Brook (UK). A single GHM (Mac-PDM.09) is applied to all catchments whilst different CHMs are applied for each catchment. The CHMs typically simulate water resources impacts based on a more explicit representation of catchment water resources than that available from the GHM, and the CHMs include river routing. Simulations of average annual runoff, mean monthly runoff and high (Q5) and low (Q95) monthly runoff under baseline (1961-1990) and climate change scenarios are presented. We compare the simulated runoff response of each hydrological model to (1) prescribed increases in global mean temperature from the HadCM3 climate model and (2)a prescribed increase in global-mean temperature of 2oC for seven GCMs to explore response to climate model and structural uncertainty. We find that differences in projected changes of mean annual runoff between the two types of hydrological model can be substantial for a given GCM, and they are generally larger for indicators of high and low flow. However, they are relatively small in comparison to the range of projections across the seven GCMs. Hence, for the six catchments and seven GCMs we considered, climate model structural uncertainty is greater than the uncertainty associated with the type of hydrological model applied. Moreover, shifts in the seasonal cycle of runoff with climate change are presented similarly by both hydrological models, although for some catchments the monthly timing of high and low flows differs.This implies that for studies that seek to quantify and assess the role of climate model uncertainty on catchment-scale runoff, it may be equally as feasible to apply a GHM as it is to apply a CHM, especially when climate modelling uncertainty across the range of available GCMs is as large as it currently is. Whilst the GHM is able to represent the broad climate change signal that is represented by the CHMs, we find, however, that for some catchments there are differences between GHMs and CHMs in mean annual runoff due to differences in potential evaporation estimation methods, in the representation of the seasonality of runoff, and in the magnitude of changes in extreme monthly runoff, all of which have implications for future water management issues.
Resumo:
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4oC by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450ppm CO2e and leads to a 2oC increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.