94 resultados para calcium sulphate
Resumo:
The aim of the study was to compare the antimicrobial activities of freshly-made, heat-treated (HT), and 14 d stored (+)-Catechin solutions with (+)-catechin flavanol isomers in the presence of copper sulphate. (+)-Catechin activity was investigated when combined with different ratios of Cu2+; 100°C heat treatment; autoclaving; and 14 d storage against Staphylococcus aureus. Cu2+-(+)-Catechin complexation, isomer structure-activity relationships, and H2O2 generation were also investigated. Freshly-made, HT, and 14d stored flavanols showed no activity. Whilst combined Cu2+-autoclaved (+)-Catechin and -HT(+)-Catechin activities were similar, HT(+)-Catechin was more active than either freshly-made (+)-catechin (generating more H2O2) or (-)-Epicatechin (though it generated less H2O2) or 14d-(+)-Catechin (which had similar activity to Cu2+ controls - though it generated more H2O2). When combined with Cu2+, in terms of rates of activity, HT(+)-Catechin was lower than (-)-Epigallocatechin gallate and greater than freshly-made (+)-Catechin. Freshly-made and HT(+)-Catechin formed acidic complexes with Cu2+ as indicated by pH and UV-vis measurements although pH changes did not account for antimicrobial activity. Freshly-made and HT(+)-Catechin both formed Cu2+ complexes. The HT(+)-Catechin complex generated more H2O2 which could explain its higher antimicrobial activity.
Resumo:
The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20–27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.
Resumo:
High ionic calcium concentration and the absence of caseinmacropeptides (CMP) in acid whey could influence the production of angiotensin-I-converting enzyme (ACE)-inhibitory hydrolysate and its bioactivity through the application of the integrative process. Therefore, the aim of the present study was to produce a hydrolysate from acid whey applying the integrative process. Process performance was evaluated based on protein adsorption capacity and conversion in relation to ACE-inhibitory activity (ACEi%) and ionic calcium concentration. Hydrolysates with high potency of their biological activity were produced (IC50 = 206-353 μg mL-1). High ionic calcium concentration in acid whey contributed to ACE-inhibitory activity. However, low β-lactoglobulin adsorption and conversion was observed. Optimisation of the resin volume increased the adsorption of β-lactoglobulin significantly but with lower selectivity. The changes in conversion value were not significant even at higher concentration of enzyme. Several ACE inhibitors derived from β-lactoglobulin that were identified before in sweet whey hydrolysates such as, IIAEKT, IIAE, IVTQ, LIVTQ, LIVTQT, LDAQ and LIVT were found. New peptides such as, SNICNI and ECCHGD derived from α-lactalbumin and BSA respectively were identified.
Resumo:
Estrogens have been demonstrated to rapidly modulate calcium levels in a variety of cell types. However, the significance of estrogen-mediated calcium flux in neuronal cells is largely unknown. The relative importance of intra- and extracellular sources of calcium in estrogenic effects on neurons is also not well understood. Previously, we have demonstrated that membrane-limited estrogens, such as E-BSA given before an administration of a 2-hour pulse of 17beta-estradiol (E(2)), can potentiate the transcription mediated by E(2) from a consensus estrogen response element (ERE)-driven reporter gene. Inhibitors to signal transduction cascades given along with E-BSA or E(2) demonstrated that calcium flux is important for E-BSA-mediated potentiation of transcription in a transiently transfected neuroblastoma cell line. In this report, we have used inhibitors to different voltage-gated calcium channels (VGCCs) and to intracellular store receptors along with E-BSA in the first pulse or with E(2) in the second pulse to investigate the relative importance of these channels to estrogen-mediated transcription. Neither L- nor P-type VGCCs seem to play a role in estrogen action in these cells; while N-type VGCCs are important in both the non-genomic and genomic modes of estrogen action. Specific inhibitors also showed that the ryanodine receptor and the inositol trisphosphate receptor are important to E-BSA-mediated transcriptional potentiation. This report provides evidence that while intracellular stores of calcium are required to couple non-genomic actions of estrogen initiated at the membrane to transcription in the nucleus, extracellular sources of calcium are also important in both non-genomic and genomic actions of estrogens. Copyright (c) 2005 S. Karger AG, Basel.