141 resultados para beef cows
Resumo:
Multiparous rumen-fistulated Holstein cows were fed, from d 1 to 28 post-calving, an ad libitum TMR containing (g/kg DM) grass silage (196), corn silage (196), wheat (277), soybean meal (100), and other feeds (231) with CP, NDF, starch and water soluble carbohydrate concentrations of 176, 260, 299 and 39 g/kg DM respectively and ME of 12.2 MJ/kg DM. Treatments consisting of a minimum of 1010 cfu Megasphaera elsdenii NCIMB 41125 in 250 ml solution (MEGA) or 250 ml of autoclaved M. elsdenii (CONT) were administered via the rumen cannula on d 3 and 12 of lactation (n=7 per treatment). Mid-rumen pH was measured every 15 minutes and eating and ruminating behavior was recorded for 24 h on d 2, 4, 6, 8, 11, 13, 15, 17, 22 and 28. Rumen fluid for VFA and lactic acid (LA) analysis was collected at 11 timepoints on each of d 2, 4, 6, 13 and 15. Data were analysed as repeated measures using the Glimmix (LA data) or Mixed (all other data) procedures of SAS with previous 305 d milk yield and d 2 measurements as covariates where appropriate. Milk yield was higher (CONT 43.0 vs MEGA 45.4 ±0.75 kg/d, P=0.051) and fat concentration was lower (CONT 45.6 vs MEGA 40.4 ±1.05 g/kg, P=0.005) in cows that received MEGA. Time spent eating (263 ±15 min/d) and ruminating (571 ±13 min/d), DM intake (18.4 ±0.74 kg/d), proportion of each 24 h period with rumen pH below 5.6 (3.69 ±0.94 h) and LA concentrations (2.00 mM) were similar (P>0.327) across treatments. Ruminal total VFA concentration (104 ±3 mM) was similar (P=0.404) across treatments, but a shift from acetate (CONT 551 vs MEGA 524 ±14 mmol/mol VFA, P=0.161) to propionate production (CONT 249 vs MEGA 275 ±11 mmol/mol VFA, P=0.099) meant that the acetate:propionate ratio (CONT 2.33 vs MEGA 1.94 ±0.15) was reduced (P=0.072) in cows that received MEGA. This study provides evidence that supplementation of early lactation dairy cows with MEGA alters rumen fermentation patterns in favour of propionate, with potential benefits for animal health and productivity.
Effects of abomasal vegetable oil infusion on splanchnic nutrient metabolism in lactating dairy cows
Resumo:
The principal driver of nitrogen (N) losses from the body including excretion and secretion in milk is N intake. However, other covariates may also play a role in modifying the partitioning of N. This study tests the hypothesis that N partitioning in dairy cows is affected by energy and protein interactions. A database containing 470 dairy cow observations was collated from calorimetry experiments. The data include N and energy parameters of the diet and N utilization by the animal. Univariate and multivariate meta-analyses that considered both within and between study effects were conducted to generate prediction equations based on N intake alone or with an energy component. The univariate models showed that there was a strong positive linear relationships between N intake and N excretion in faeces, urine and milk. The slopes were 0.28 faeces N, 0.38 urine N and 0.20 milk N. Multivariate model analysis did not improve the fit. Metabolizable energy intake had a significant positive effect on the amount of milk N in proportion to faeces and urine N, which is also supported by other studies. Another measure of energy considered as a covariate to N intake was diet quality or metabolizability (the concentration of metabolizable energy relative to gross energy of the diet). Diet quality also had a positive linear relationship with the proportion of milk N relative to N excreted in faeces and urine. Metabolizability had the largest effect on faeces N due to lower protein digestibility of low quality diets. Urine N was also affected by diet quality and the magnitude of the effect was higher than for milk N. This research shows that including a measure of diet quality as a covariate with N intake in a model of N execration can enhance our understanding of the effects of diet composition on N losses from dairy cows. The new prediction equations developed in this study could be used to monitor N losses from dairy systems.
An isotope dilution model for partitioning phenylalanine uptake by the liver of lactating dairy cows
Resumo:
An isotope dilution model for partitioning phenylalanine uptake by the liver of the lactating dairy cow was constructed and solved in the steady state. If assumptions are made, model solution permits calculation of the rate of phenylalanine uptake from portal vein and hepatic arterial blood supply, phenylalanine release into the hepatic vein, phenylalanine oxidation and synthesis, and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma fow rate through the liver in combination with phenylalanine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]phenylalanine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance for the dairy cow when considering the requirements for milk protein synthesis and the negative environmental impact of excessive nitrogen excretion.
Resumo:
Curd rheology and calcium distribution in buffalo and cows’ milk, were compared at their natural pH and during acidification (pH 6.5–5.6). Buffalo milk displays a curd structure and rheology different from that of cows’ milk and the casein-bound calcium, as well as the contents of fat, protein and calcium, are also higher. Due to these higher amounts of casein-bound calcium, the overall curd strength with buffalo milk (as indicated by the dynamic moduli) was higher, at similar pH values, than those of equivalent gels produced from cows’ milk. The curd rheology was adversely affected at lower pH (5.8–5.6) in both of the milk types, due to the loss of casein-bound calcium from casein micelles. The degree of solubilisation of calcium in buffalo milk during acidification is quite different from that observed in cows’ milk with a lower proportion of the calcium being solubilised in the former. The maximum curd firmness was obtained at pH 6.0 in both milk types. For both species, these rheological and micellar changes were qualitatively the same but quantitatively different, due to the different milk compositions.
Resumo:
A dynamic, mechanistic model of enteric fermentation was used to investigate the effect of type and quality of grass forage, dry matter intake (DMI) and proportion of concentrates in dietary dry matter (DM) on variation in methane (CH(4)) emission from enteric fermentation in dairy cows. The model represents substrate degradation and microbial fermentation processes in rumen and hindgut and, in particular, the effects of type of substrate fermented and of pH oil the production of individual volatile fatty acids and CH, as end-products of fermentation. Effects of type and quality of fresh and ensiled grass were evaluated by distinguishing two N fertilization rates of grassland and two stages of grass maturity. Simulation results indicated a strong impact of the amount and type of grass consumed oil CH(4) emission, with a maximum difference (across all forage types and all levels of DM 1) of 49 and 77% in g CH(4)/kg fat and protein corrected milk (FCM) for diets with a proportion of concentrates in dietary DM of 0.1 and 0.4, respectively (values ranging from 10.2 to 19.5 g CH(4)/kg FCM). The lowest emission was established for early Cut, high fertilized grass silage (GS) and high fertilized grass herbage (GH). The highest emission was found for late cut, low-fertilized GS. The N fertilization rate had the largest impact, followed by stage of grass maturity at harvesting and by the distinction between GH and GS. Emission expressed in g CH(4)/kg FCM declined oil average 14% with an increase of DMI from 14 to 18 kg/day for grass forage diets with a proportion of concentrates of 0.1, and on average 29% with an increase of DMI from 14 to 23 kg/day for diets with a proportion of concentrates of 0.4. Simulation results indicated that a high proportion of concentrates in dietary DM may lead to a further reduction of CH, emission per kg FCM mainly as a result of a higher DM I and milk yield, in comparison to low concentrate diets. Simulation results were evaluated against independent data obtained at three different laboratories in indirect calorimetry trials with COWS consuming GH mainly. The model predicted the average of observed values reasonably, but systematic deviations remained between individual laboratories and root mean squared prediction error was a proportion of 0.12 of the observed mean. Both observed and predicted emission expressed in g CH(4)/kg DM intake decreased upon an increase in dietary N:organic matter (OM) ratio. The model reproduced reasonably well the variation in measured CH, emission in cattle sheds oil Dutch dairy farms and indicated that oil average a fraction of 0.28 of the total emissions must have originated from manure under these circumstances.