101 resultados para X-ray attenuation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure is presented for obtaining conformational parameters from oriented but non-crystalline polymers. This is achieved by comparison of the experimental wide angle X-ray scattering with that calculated from models but in such a way that foreknowledge of the orientation distribution function is not required. X-ray scattering intensity values for glassy isotactic poly(methylmethacrylate) are analysed by these techniques. The method could be usefully applied to other oriented molecular systems such as liquid crystalline materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procedure is presented for obtaining full molecular orientation information from wide angle X-ray scattering patterns of deformed non-crystalline polymers. The method is based on the analysis of experimental and calculated scattering patterns into their spherical harmonics. The results obtained for PMMA are compared with values predicted by the pseudo affine and affine deformation schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubility of penciclovir (C10N5O3H17) in a novel film formulation designed for the treatment of cold sores was determined using X-ray, thermal, microscopic and release rate techniques. Solubilities of 0.15–0.23, 0.44, 0.53 and 0.42% (w/w) resulted for each procedure. Linear calibration lines were achieved for experimentally and theoretically determined differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) data. Intra- and inter-batch data precision values were determined; intra values were more precise. Microscopy was additionally useful for examining crystal shape, size distribution and homogeneity of drug distribution within the film. Whereas DSC also determined melting point, XRPD identified polymorphs and release data provided relevant kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mannitol is a polymorphic pharmaceutical excipient, which commonly exists in three forms: alpha, beta and delta. Each polymorph has a needle-like morphology, which can give preferred orientation effects when analysed by X-ray powder diffractometry (XRPD) thus providing difficulties for quantitative XRPD assessments. The occurrence of preferred orientation may be demonstrated by sample rotation and the consequent effects on X-ray data can be minimised by reducing the particle size. Using two particle size ranges (less than 125 and 125–500�microns), binary mixtures of beta and delta mannitol were prepared and the delta component was quantified. Samples were assayed in either a static or rotating sampling accessory. Rotation and reducing the particle size range to less than�125 microns halved the limits of detection and quantitation to 1 and 3.6%, respectively. Numerous potential sources of assay errors were investigated; sample packing and mixing errors contributed the greatest source of variation. However, the rotation of samples for both particle size ranges reduced the majority of assay errors examined. This study shows that coupling sample rotation with a particle size reduction minimises preferred orientation effects on assay accuracy, allowing discrimination of two very similar polymorphs at around the 1% level

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naphthalene and anthracene transition metalates are potent reagents, but their electronic structures have remained poorly explored. A study of four Cp*-substituted iron complexes (Cp* = pentamethylcyclopentadienyl) now gives rare insight into the bonding features of such species. The highly oxygen- and water-sensitive compounds [K(18-crown- 6){Cp*Fe(η4-C10H8)}] (K1), [K(18-crown-6){Cp*Fe(η4-C14H10)}] (K2), [Cp*Fe(η4-C10H8)] (1), and [Cp*Fe(η4-C14H10)] (2) were synthesized and characterized by NMR, UV−vis, and 57Fe Mössbauer spectroscopy. The paramagnetic complexes 1 and 2 were additionally characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility measurements. The molecular structures of complexes K1, K2, and 2 were determined by single-crystal X-ray crystallography. Cyclic voltammetry of 1 and 2 and spectroelectrochemical experiments revealed the redox properties of these complexes, which are reversibly reduced to the monoanions [Cp*Fe(η4-C10H8)]− (1−) and [Cp*Fe(η4-C14H10)]− (2−) and reversibly oxidized to the cations [Cp*Fe(η6-C10H8)]+ (1+) and [Cp*Fe(η6-C14H10)]+ (2+). Reduced orbital charges and spin densities of the naphthalene complexes 1−/0/+ and the anthracene derivatives 2−/0/+ were obtained by density functional theory (DFT) methods. Analysis of these data suggests that the electronic structures of the anions 1− and 2− are best represented by low-spin FeII ions coordinated by anionic Cp* and dianionic naphthalene and anthracene ligands. The electronic structures of the neutral complexes 1 and 2 may be described by a superposition of two resonance configurations which, on the one hand, involve a low-spin FeI ion coordinated by the neutral naphthalene or anthracene ligand L, and, on the other hand, a low-spin FeII ion coordinated to a ligand radical L•−. Our study thus reveals the redox noninnocent character of the naphthalene and anthracene ligands, which effectively stabilize the iron atoms in a low formal, but significantly higher spectroscopic oxidation state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reaction of VO(acac)(2) with the ONO-chelator obtained by the condensation of salicylaldehyde with 2-hydroxybenzoylhydrazine (H2L) in a monohydric alcohol. (ROH) medium produces VO(OR)L]-type oxidoalkoxido complexes (1-7) where R = Me, Pr-n, Pr-i, Bu-n, Bu-i, Bu-t and (n)Pen. All the complexes show the metal atom to have a five-coordinate square pyramidal environment, although in some complexes there is an additional weak V center dot center dot center dot O interaction in the sixth axial position. In acetonitrile medium and in the presence of a cis-diol (ethylene glycol), H2L reacts with VO(acac)(2) to form a six-coordinate complex, [VO(OCH2CH2OH)L] (8). When the reaction is carried out in acetonitrile medium in the presence of 2-amino ethanol, a completely different type of product containing the square pyramidal complex anion [VO2L](-) associated with the cation [NH3CH2CH2OH](+) is obtained. It was noted previously that on being reacted with monodentate nitrogen donor bases B (which are stronger than pyridine), the [VO(OR)L] complexes react to form the same complex anion [VO2L](-) associated with the corresponding cation [BH](+). The coordination environment around the V(V) acceptor center of the water soluble [BH](+)[VO2L](-)satisfies one of the several requirements for an efficient antidiabetic vanadium species such as water solubility, nature of donor atoms of the ligand and their disposition around the VO2+ acceptor center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) in methanol with aqueous NH(4)VO(3) solution in perchloric acid medium affords the mononuclear oxovanadium(V) complex [VOL(1)(MeOH)]-ClO(4) (1) as deep blue solid while the treatment of same solution of (R,R)-N,N-salicylidene cyclohexane 1,2-diamine(H(2)L(1)) with aqueous solution of VOSO(4) leads to the formation of di-(mu-oxo) bridged vanadium(V) complex [VO(2)L(2)](2) (2) as green solid where HL(2) = (R,R)-N-salicylidene cyclohexane 1,2-diamine. The ligand HL(2) is generated in situ by the hydrolysis of one of the imine bonds of HL(1) ligand during the course of formation of complex [VO(2)L(2)](2) (2). Both the compounds have been characterized by single crystal X-ray diffraction as well as spectroscopic methods. Compounds 1 and 2 are to act as catalyst for the catalytic bromide oxidation and C-H bond oxidation in presence of hydrogen peroxide. The representative substrates 2,4-dimethoxy benzoic acid and para-hydroxy benzoic acids are brominated in presence of H(2)O(2) and KBr in acid medium using the above compounds as catalyst. The complexes are also used as catalyst for C-H bond activation of the representative hydrocarbons toluene, ethylbenzene and cyclohexane where hydrogen peroxide acts as terminal oxidant. The yield percentage and turnover number are also quite good for the above catalytic reaction. The oxidized products of hydrocarbons have been characterized by GC Analysis while the brominated products have been characterized by (1)H NMR spectroscopic studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cobalt(III) complexes of diacetyl monooxime benzoyl hydrazone (dmoBH(2)) and diacetyl monooxime isonicotinoyl hydrazone (dmoInH(2)) have been synthesized and characterized by elemental analyses and spectroscopic methods. The X-ray crystal structures of the two hydrazone ligands, as well as that of the cobalt(III) complex [Co(III)(dmoInH)(2)]Cl center dot 2H(2)O, are also reported. It is found that in the cobalt(III) complexes the Co(III) ion is hexa-coordinated, the hydrazone ligands behaving as mono-anionic tridentate O,N,N donors. In the [Co(III)(dmoInH) (2)]Cl center dot 2H(2)O complex, the amide and the oxime hydrogens are deprotonated for both the ligands, while the isonicotine nitrogens are protonated. In the [Co(III)(d-moBH)(2)] Cl complex, only the amide nitrogens are deprotonated. It is shown that the additional hydrogen bonding capability of the isonicotine nitrogen results in different conformation and supramolecular structure for dmoInH(2), compared to dmoBH(2), in the solid state. Comparing the structure of the [CoIII(dmoInH)(2)]Cl center dot 2H(2)O with that of the Zn(II) complex of the same ligand, reported earlier, it is seen that the metal ion has a profound influence on the supramolecular structure, due to change in geometrical dispositions of the chelate rings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate contact with the soil is essential for water and nutrient adsorption by plant roots, but the determination of root–soil contact is a challenging task because it is difficult to visualize roots in situ and quantify their interactions with the soil at the scale of micrometres. A method to determine root–soil contact using X-ray microtomography was developed. Contact areas were determined from 3D volumetric images using segmentation and iso-surface determination tools. The accuracy of the method was tested with physical model systems of contact between two objects (phantoms). Volumes, surface areas and contact areas calculated from the measured phantoms were compared with those estimated from image analysis. The volume was accurate to within 0.3%, the surface area to within 2–4%, and the contact area to within 2.5%. Maize and lupin roots were grown in soil (<2 mm) and vermiculite at matric potentials of −0.03 and −1.6 MPa and in aggregate fractions of 4–2, 2–1, 1–0.5 and < 0.5 mm at a matric potential of −0.03 MPa. The contact of the roots with their growth medium was determined from 3D volumetric images. Macroporosity (>70 µm) of the soil sieved to different aggregate fractions was calculated from binarized data. Root-soil contact was greater in soil than in vermiculite and increased with decreasing aggregate or particle size. The differences in root–soil contact could not be explained solely by the decrease in porosity with decreasing aggregate size but may also result from changes in particle and aggregate packing around the root.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mononuclear octahedral nickel(II) complex [Ni(HL(1))(2)](SCN)(2) (1) and an unusual penta-nuclear complex [{(NiL(2))(mu-SCN)}(4)Ni(NCS)(2)]center dot 2CH(3)CN (2) where HL(1) = 3-(2-aminoethylimino)butan-2-one oxime and HL(2) = 3-(hydroxyimino)butan-2-ylidene)amino)propylimino)butan-2-one oxime have been prepared and characterized by X-ray crystallography. The mono-condensed ligand, HL(1), was prepared by the 1:1 condensation of the 1,2-diaminoethane with diacetylmonoxime in methanol under high dilution. Complex 1 is found to be a mer isomer and the amine hydrogen atoms are involved in extensive hydrogen bonding with the thiocyanate anions. The dicondensed ligand, HL(2), was prepared by the 1:2 condensation of the 1,3-diaminopropane with diacetylmonoxime in methanol. The central nickel(II) in 2 is coordinated by six nitrogen atoms of six thiocyanate groups, four of which utilize their sulphur atoms to connect four NiL2 moieties to form a penta-nuclear complex and it is unique in the sense that this is the first thiocyanato bridged penta-nuclear nickel(II) compound with Schiff base ligands.