139 resultados para Wetland mitigation
Resumo:
Volcanic ash fallout associated with renewal of explosive activity at Colima, represents a serious threat to the surrounding urbanized area. Here we assess the tephra fallout hazard associated with a Plinian eruption scenario. The eruptive history of Volcán de Colima shows that Plinian eruptions occur approximately every 100 years and the last eruption, the 1913, represents the largest historic eruption of this volcano. We used the last eruption as a reference to discuss volcanic hazard and risk scenarios connected with ash fallout. Tephra fallout deposits are modeled using HAZMAP, a model based on a semi-analytical solution of the advection– diffusion–sedimentation equation for volcanic particles. Based on a statistical study of wind profiles at Colima region, we first reconstructed ash loading maps and then computed ground load probability maps for different seasons. The obtained results show that a Plinian eruptive scenario at Volcán de Colima, could seriously damage more than 10 small towns and ranches, and potentially affect big cities located at tens of kilometers from the eruptive center. The probability maps obtained are aimed to give support to the risk mitigation strategies
Resumo:
During April-May 2010 volcanic ash clouds from the Icelandic Eyjafjallajökull volcano reached Europe causing an unprecedented disruption of the EUR/NAT region airspace. Civil aviation authorities banned all flight operations because of the threat posed by volcanic ash to modern turbine aircraft. New quantitative airborne ash mass concentration thresholds, still under discussion, were adopted for discerning regions contaminated by ash. This has implications for ash dispersal models routinely used to forecast the evolution of ash clouds. In this new context, quantitative model validation and assessment of the accuracies of current state-of-the-art models is of paramount importance. The passage of volcanic ash clouds over central Europe, a territory hosting a dense network of meteorological and air quality observatories, generated a quantity of observations unusual for volcanic clouds. From the ground, the cloud was observed by aerosol lidars, lidar ceilometers, sun photometers, other remote-sensing instru- ments and in-situ collectors. From the air, sondes and multiple aircraft measurements also took extremely valuable in-situ and remote-sensing measurements. These measurements constitute an excellent database for model validation. Here we validate the FALL3D ash dispersal model by comparing model results with ground and airplane-based measurements obtained during the initial 14e23 April 2010 Eyjafjallajökull explosive phase. We run the model at high spatial resolution using as input hourly- averaged observed heights of the eruption column and the total grain size distribution reconstructed from field observations. Model results are then compared against remote ground-based and in-situ aircraft-based measurements, including lidar ceilometers from the German Meteorological Service, aerosol lidars and sun photometers from EARLINET and AERONET networks, and flight missions of the German DLR Falcon aircraft. We find good quantitative agreement, with an error similar to the spread in the observations (however depending on the method used to estimate mass eruption rate) for both airborne and ground mass concentration. Such verification results help us understand and constrain the accuracy and reliability of ash transport models and it is of enormous relevance for designing future operational mitigation strategies at Volcanic Ash Advisory Centers.
Resumo:
A radiocarbon-dated multiproxy palaeoenvironmental record from the Lower Thames Valley at Hornchurch Marshes has provided a reconstruction of the timing and nature of vegetation succession against a background of Holocene climate change, relative sea level movement and human activities. The investigation recorded widespread peat formation between c. 6300 and 3900 cal. yr BP (marine ‘regression’), succeeded by evidence for marine incursion. The multiproxy analyses of these sediments, comprising pollen, Coleoptera, diatoms, and plant and wood macrofossils, have indicated significant changes in both the wetland and dryland environment, including the establishment of Alnus (Alder) carr woodland, and the decline of both Ulmus (Elm; c. 5740 cal. yr BP) and Tilia (Lime; c. 5600 cal. yr BP, and 4160–3710 cal. yr BP). The beetle faunas from the peat also suggest a thermal climate similar to that of the present day. At c. 4900 cal. yr BP, Taxus (L.; Yew) woodland colonised the peatland forming a plant community that has no known modern analogue in the UK. The precise reason, or reasons, for this event remain unclear, although changes in peatland hydrology seem most likely. The growth of Taxus on peatland not only has considerable importance for our knowledge of the vegetation history of southeast England, and NW Europe generally, but also has wider implications for the interpretation of Holocene palaeobotanical records. At c. 3900 cal. yr BP, Taxus declined on the peatland surface during a period of major hydrological change (marine incursion), an event also strongly associated with the decline of dryland woodland taxa, including Tilia and Quercus, and the appearance of anthropogenic indicators.
Resumo:
This paper seeks to analyse and discuss, from the perspective of the owners of agricultural land, the main changes to the Capital Gains Tax regime introduced in the Finance Act 1998 and subsequently amended in the Finance Act 2000. The replacement of indexation with a new Taper relief is examined, along with the phasing out of Retirement relief, and the interaction of Taper relief with Rollover relief. The opportunity for tax mitigation by the owners of agricultural land is critically examined.
Resumo:
We assessed the potential for using optical functional types as effective markers to monitor changes in vegetation in floodplain meadows associated with changes in their local environment. Floodplain meadows are challenging ecosystems for monitoring and conservation because of their highly biodiverse nature. Our aim was to understand and explain spectral differences among key members of floodplain meadows and also characterize differences with respect to functional traits. The study was conducted on a typical floodplain meadow in UK (MG4-type, mesotrophic grassland type 4, according to British National Vegetation Classification). We compared two approaches to characterize floodplain communities using field spectroscopy. The first approach was sub-community based, in which we collected spectral signatures for species groupings indicating two distinct eco-hydrological conditions (dry and wet soil indicator species). The other approach was “species-specific”, in which we focused on the spectral reflectance of three key species found on the meadow. One herb species is a typical member of the MG4 floodplain meadow community, while the other two species, sedge and rush, represent wetland vegetation. We also monitored vegetation biophysical and functional properties as well as soil nutrients and ground water levels. We found that the vegetation classes representing meadow sub-communities could not be spectrally distinguished from each other, whereas the individual herb species was found to have a distinctly different spectral signature from the sedge and rush species. The spectral differences between these three species could be explained by their observed differences in plant biophysical parameters, as corroborated through radiative transfer model simulations. These parameters, such as leaf area index, leaf dry matter content, leaf water content, and specific leaf area, along with other functional parameters, such as maximum carboxylation capacity and leaf nitrogen content, also helped explain the species’ differences in functional dynamics. Groundwater level and soil nitrogen availability, which are important factors governing plant nutrient status, were also found to be significantly different for the herb/wetland species’ locations. The study concludes that spectrally distinguishable species, typical for a highly biodiverse site such as a floodplain meadow, could potentially be used as target species to monitor vegetation dynamics under changing environmental conditions.
Resumo:
Urban microclimates are greatly affected by urban form and texture and have a significant impact on building energy performance. The impact of urban form on energy consumption in buildings mainly relates to the availability of the uses of solar radiation, daylighting and natural ventilation. The urban heat island (UHI) effect increases the risk of overheating in buildings as well as the maximum energy demand for cooling. A need has arisen for a robust calculation tool (using the first-cut calculation method) to enable planners, architects and environmental assessors, to quickly and accurately compare the impact of different urban forms on local climate and UHI mitigation strategies. This paper describes a tool for the simulation of urban microclimates, which is developed by integrating image processing with a coupled thermal and airflow model.
Resumo:
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is organised around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments, comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across communities.
Resumo:
The vulnerability of smallholder farmers to climate change and variability is increasingly rising. As agriculture is the only source of income for most of them, agricultural adaptation with respect to climate change is vital for their sustenance and to ensure food security. In order to develop appropriate strategies and institutional responses, it is necessary to have a clear understanding of the farmers’ perception of climate change, actual adaptations at farm-level and what factors drive and constrain their decision to adapt. Thus, this study investigates the farm-level adaptation to climate change based on the case of a farming community in Sri Lanka. The findings revealed that farmers’ perceived the ongoing climate change based on their experiences. Majority of them adopted measures to address climate change and variability. These adaptation measures can be categorised into five groups, such as crop management, land management, irrigation management, income diversification, and rituals. The results showed that management of non-climatic factors was an important strategy to enhance farmers’ adaptation, particularly in a resource-constrained smallholder farming context. The results of regression analysis indicated that human cognition was an important determinant of climate change adaptation. Social networks were also found to significantly influence adaptation. The study also revealed that social barriers, such as cognitive and normative factors, are equally important as other economic barriers to adaptation. While formulating and implementing the adaptation strategies, this study underscored the importance of understanding socio-economic, cognitive and normative aspects of the local communities.
Resumo:
March 2012 brought the first solar and geomagnetic disturbances of any note during solar cycle 24. But perhaps what was most remarkable about these events was how unremarkable they were compared to others during the space-age, attracting attention only because solar activity had been so quiet. This follows an exceptionally low and long-lived solar cycle minimum, and so the current cycle looks likely to extend a long-term decline in solar activity that started around 1985 and that could even lead to conditions similar to the Maunder minimum within 40 years from now, with implications for solar-terrestrial science and the mitigation of space weather hazards and maybe even for climate in certain regions and seasons.
Resumo:
The United Nation Intergovernmental Panel on Climate Change (IPCC) makes it clear that climate change is due to human activities and it recognises buildings as a distinct sector among the seven analysed in its 2007 Fourth Assessment Report. Global concerns have escalated regarding carbon emissions and sustainability in the built environment. The built environment is a human-made setting to accommodate human activities, including building and transport, which covers an interdisciplinary field addressing design, construction, operation and management. Specifically, Sustainable Buildings are expected to achieve high performance throughout the life-cycle of siting, design, construction, operation, maintenance and demolition, in the following areas: • energy and resource efficiency; • cost effectiveness; • minimisation of emissions that negatively impact global warming, indoor air quality and acid rain; • minimisation of waste discharges; and • maximisation of fulfilling the requirements of occupants’ health and wellbeing. Professionals in the built environment sector, for example, urban planners, architects, building scientists, engineers, facilities managers, performance assessors and policy makers, will play a significant role in delivering a sustainable built environment. Delivering a sustainable built environment needs an integrated approach and so it is essential for built environment professionals to have interdisciplinary knowledge in building design and management . Building and urban designers need to have a good understanding of the planning, design and management of the buildings in terms of low carbon and energy efficiency. There are a limited number of traditional engineers who know how to design environmental systems (services engineer) in great detail. Yet there is a very large market for technologists with multi-disciplinary skills who are able to identify the need for, envision and manage the deployment of a wide range of sustainable technologies, both passive (architectural) and active (engineering system),, and select the appropriate approach. Employers seek applicants with skills in analysis, decision-making/assessment, computer simulation and project implementation. An integrated approach is expected in practice, which encourages built environment professionals to think ‘out of the box’ and learn to analyse real problems using the most relevant approach, irrespective of discipline. The Design and Management of Sustainable Built Environment book aims to produce readers able to apply fundamental scientific research to solve real-world problems in the general area of sustainability in the built environment. The book contains twenty chapters covering climate change and sustainability, urban design and assessment (planning, travel systems, urban environment), urban management (drainage and waste), buildings (indoor environment, architectural design and renewable energy), simulation techniques (energy and airflow), management (end-user behaviour, facilities and information), assessment (materials and tools), procurement, and cases studies ( BRE Science Park). Chapters one and two present general global issues of climate change and sustainability in the built environment. Chapter one illustrates that applying the concepts of sustainability to the urban environment (buildings, infrastructure, transport) raises some key issues for tackling climate change, resource depletion and energy supply. Buildings, and the way we operate them, play a vital role in tackling global greenhouse gas emissions. Holistic thinking and an integrated approach in delivering a sustainable built environment is highlighted. Chapter two demonstrates the important role that buildings (their services and appliances) and building energy policies play in this area. Substantial investment is required to implement such policies, much of which will earn a good return. Chapters three and four discuss urban planning and transport. Chapter three stresses the importance of using modelling techniques at the early stage for strategic master-planning of a new development and a retrofit programme. A general framework for sustainable urban-scale master planning is introduced. This chapter also addressed the needs for the development of a more holistic and pragmatic view of how the built environment performs, , in order to produce tools to help design for a higher level of sustainability and, in particular, how people plan, design and use it. Chapter four discusses microcirculation, which is an emerging and challenging area which relates to changing travel behaviour in the quest for urban sustainability. The chapter outlines the main drivers for travel behaviour and choices, the workings of the transport system and its interaction with urban land use. It also covers the new approach to managing urban traffic to maximise economic, social and environmental benefits. Chapters five and six present topics related to urban microclimates including thermal and acoustic issues. Chapter five discusses urban microclimates and urban heat island, as well as the interrelationship of urban design (urban forms and textures) with energy consumption and urban thermal comfort. It introduces models that can be used to analyse microclimates for a careful and considered approach for planning sustainable cities. Chapter six discusses urban acoustics, focusing on urban noise evaluation and mitigation. Various prediction and simulation methods for sound propagation in micro-scale urban areas, as well as techniques for large scale urban noise-mapping, are presented. Chapters seven and eight discuss urban drainage and waste management. The growing demand for housing and commercial developments in the 21st century, as well as the environmental pressure caused by climate change, has increased the focus on sustainable urban drainage systems (SUDS). Chapter seven discusses the SUDS concept which is an integrated approach to surface water management. It takes into consideration quality, quantity and amenity aspects to provide a more pleasant habitat for people as well as increasing the biodiversity value of the local environment. Chapter eight discusses the main issues in urban waste management. It points out that population increases, land use pressures, technical and socio-economic influences have become inextricably interwoven and how ensuring a safe means of dealing with humanity’s waste becomes more challenging. Sustainable building design needs to consider healthy indoor environments, minimising energy for heating, cooling and lighting, and maximising the utilisation of renewable energy. Chapter nine considers how people respond to the physical environment and how that is used in the design of indoor environments. It considers environmental components such as thermal, acoustic, visual, air quality and vibration and their interaction and integration. Chapter ten introduces the concept of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass, in order to minimise heating and cooling load as well as energy consumption for artificial lighting. Chapter eleven discusses the growing importance of integrating Renewable Energy Technologies (RETs) into buildings, the range of technologies currently available and what to consider during technology selection processes in order to minimise carbon emissions from burning fossil fuels. The chapter draws to a close by highlighting the issues concerning system design and the need for careful integration and management of RETs once installed; and for home owners and operators to understand the characteristics of the technology in their building. Computer simulation tools play a significant role in sustainable building design because, as the modern built environment design (building and systems) becomes more complex, it requires tools to assist in the design process. Chapter twelve gives an overview of the primary benefits and users of simulation programs, the role of simulation in the construction process and examines the validity and interpretation of simulation results. Chapter thirteen particularly focuses on the Computational Fluid Dynamics (CFD) simulation method used for optimisation and performance assessment of technologies and solutions for sustainable building design and its application through a series of cases studies. People and building performance are intimately linked. A better understanding of occupants’ interaction with the indoor environment is essential to building energy and facilities management. Chapter fourteen focuses on the issue of occupant behaviour; principally, its impact, and the influence of building performance on them. Chapter fifteen explores the discipline of facilities management and the contribution that this emerging profession makes to securing sustainable building performance. The chapter highlights a much greater diversity of opportunities in sustainable building design that extends well into the operational life. Chapter sixteen reviews the concepts of modelling information flows and the use of Building Information Modelling (BIM), describing these techniques and how these aspects of information management can help drive sustainability. An explanation is offered concerning why information management is the key to ‘life-cycle’ thinking in sustainable building and construction. Measurement of building performance and sustainability is a key issue in delivering a sustainable built environment. Chapter seventeen identifies the means by which construction materials can be evaluated with respect to their sustainability. It identifies the key issues that impact the sustainability of construction materials and the methodologies commonly used to assess them. Chapter eighteen focuses on the topics of green building assessment, green building materials, sustainable construction and operation. Commonly-used assessment tools such as BRE Environmental Assessment Method (BREEAM), Leadership in Energy and Environmental Design ( LEED) and others are introduced. Chapter nineteen discusses sustainable procurement which is one of the areas to have naturally emerged from the overall sustainable development agenda. It aims to ensure that current use of resources does not compromise the ability of future generations to meet their own needs. Chapter twenty is a best-practice exemplar - the BRE Innovation Park which features a number of demonstration buildings that have been built to the UK Government’s Code for Sustainable Homes. It showcases the very latest innovative methods of construction, and cutting edge technology for sustainable buildings. In summary, Design and Management of Sustainable Built Environment book is the result of co-operation and dedication of individual chapter authors. We hope readers benefit from gaining a broad interdisciplinary knowledge of design and management in the built environment in the context of sustainability. We believe that the knowledge and insights of our academics and professional colleagues from different institutions and disciplines illuminate a way of delivering sustainable built environment through holistic integrated design and management approaches. Last, but not least, I would like to take this opportunity to thank all the chapter authors for their contribution. I would like to thank David Lim for his assistance in the editorial work and proofreading.
Resumo:
Aircraft flying through cold ice-supersaturated air produce persistent contrails which contribute to the climate impact of aviation. Here, we demonstrate the importance of the weather situation, together with the route and altitude of the aircraft through this, on estimating contrail coverage. The results have implications for determining the climate impact of contrails as well as potential mitigation strategies. Twenty-one years of re-analysis data are used to produce a climatological assessment of conditions favorable for persistent contrail formation between 200 and 300 hPa over the north Atlantic in winter. The seasonal-mean frequency of cold ice-supersaturated regions is highest near 300 hPa, and decreases with altitude. The frequency of occurrence of ice-supersaturated regions varies with large-scale weather pattern; the most common locations are over Greenland, on the southern side of the jet stream and around the northern edge of high pressure ridges. Assuming aircraft take a great circle route, as opposed to a more realistic time-optimal route, is likely to lead to an error in the estimated contrail coverage, which can exceed 50% for westbound north Atlantic flights. The probability of contrail formation can increase or decrease with height, depending on the weather pattern, indicating that the generic suggestion that flying higher leads to fewer contrails is not robust.
Resumo:
Within a changing climate, Mediterranean ‘Garrigue’ xerophytes are increasingly recommended as suitable urban landscape plants in north-west Europe, based on their capacity to tolerate high temperature and reduced water availability during summer. Such species, however, have a poor reputation for tolerating waterlogged soils; paradoxically a phenomenon that may also increase in north-west Europe due to predictions for both higher volumes of winter precipitation, and short, but intensive periods of summer rainfall. This study investigated flooding tolerance in four landscape ‘Garrigue’ species, Stachys byzantina, Cistus × hybridus, Lavandula angustifolia and Salvia officinalis. Despite evolving in a dry habitat, the four species tested proved remarkably resilient to flooding. All species survived 17 days flooding in winter, with Stachys and Lavandula also surviving equivalent flooding duration during summer. Photosynthesis and biomass production, however, were strongly inhibited by flooding although the most tolerant species, Stachys quickly restored its photosynthetic capacity on termination of flooding. Overall, survival rates were comparable to previous studies on other terrestrial (including wetland) species. Subsequent experiments using Salvia (a species we identified as ‘intermediate’ in tolerance) clearly demonstrated adaptations to waterlogging, e.g. acclimation against anoxia when pre-treated with hypoxia. Despite anecdotal information to the contrary, we found no evidence to suggest that these xerophytic species are particularly intolerant of waterlogging. Other climatic and biotic factors may restrict the viability and distribution of these species within the urban conurbations of north-west Europe, but we believe increased incidence of flooding per se should not preclude their consideration.
Resumo:
The global temperature response to increasing atmospheric CO2 is often quantified by metrics such as equilibrium climate sensitivity and transient climate response1. These approaches, however, do not account for carbon cycle feedbacks and therefore do not fully represent the net response of the Earth system to anthropogenic CO2 emissions. Climate–carbon modelling experiments have shown that: (1) the warming per unit CO2 emitted does not depend on the background CO2 concentration2; (2) the total allowable emissions for climate stabilization do not depend on the timing of those emissions3, 4, 5; and (3) the temperature response to a pulse of CO2 is approximately constant on timescales of decades to centuries3, 6, 7, 8. Here we generalize these results and show that the carbon–climate response (CCR), defined as the ratio of temperature change to cumulative carbon emissions, is approximately independent of both the atmospheric CO2 concentration and its rate of change on these timescales. From observational constraints, we estimate CCR to be in the range 1.0–2.1 °C per trillion tonnes of carbon (Tt C) emitted (5th to 95th percentiles), consistent with twenty-first-century CCR values simulated by climate–carbon models. Uncertainty in land-use CO2 emissions and aerosol forcing, however, means that higher observationally constrained values cannot be excluded. The CCR, when evaluated from climate–carbon models under idealized conditions, represents a simple yet robust metric for comparing models, which aggregates both climate feedbacks and carbon cycle feedbacks. CCR is also likely to be a useful concept for climate change mitigation and policy; by combining the uncertainties associated with climate sensitivity, carbon sinks and climate–carbon feedbacks into a single quantity, the CCR allows CO2-induced global mean temperature change to be inferred directly from cumulative carbon emissions.