95 resultados para Vegetation surveys
Resumo:
Background Appropriately conducted adaptive designs (ADs) offer many potential advantages over conventional trials. They make better use of accruing data, potentially saving time, trial participants, and limited resources compared to conventional, fixed sample size designs. However, one can argue that ADs are not implemented as often as they should be, particularly in publicly funded confirmatory trials. This study explored barriers, concerns, and potential facilitators to the appropriate use of ADs in confirmatory trials among key stakeholders. Methods We conducted three cross-sectional, online parallel surveys between November 2014 and January 2015. The surveys were based upon findings drawn from in-depth interviews of key research stakeholders, predominantly in the UK, and targeted Clinical Trials Units (CTUs), public funders, and private sector organisations. Response rates were as follows: 30(55 %) UK CTUs, 17(68 %) private sector, and 86(41 %) public funders. A Rating Scale Model was used to rank barriers and concerns in order of perceived importance for prioritisation. Results Top-ranked barriers included the lack of bridge funding accessible to UK CTUs to support the design of ADs, limited practical implementation knowledge, preference for traditional mainstream designs, difficulties in marketing ADs to key stakeholders, time constraints to support ADs relative to competing priorities, lack of applied training, and insufficient access to case studies of undertaken ADs to facilitate practical learning and successful implementation. Associated practical complexities and inadequate data management infrastructure to support ADs were reported as more pronounced in the private sector. For funders of public research, the inadequate description of the rationale, scope, and decision-making criteria to guide the planned AD in grant proposals by researchers were all viewed as major obstacles. Conclusions There are still persistent and important perceptions of individual and organisational obstacles hampering the use of ADs in confirmatory trials research. Stakeholder perceptions about barriers are largely consistent across sectors, with a few exceptions that reflect differences in organisations’ funding structures, experiences and characterisation of study interventions. Most barriers appear connected to a lack of practical implementation knowledge and applied training, and limited access to case studies to facilitate practical learning. Keywords: Adaptive designs; flexible designs; barriers; surveys; confirmatory trials; Phase 3; clinical trials; early stopping; interim analyses
Resumo:
This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.
Resumo:
Human induced land-use change (LUC) alters the biogeophysical characteristics of the land surface influencing the surface energy balance. The level of atmospheric CO2 is expected to increase in the coming century and beyond, modifying temperature and precipitation patterns and altering the distribution and physiology of natural vegetation. It is important to constrain how CO2-induced climate and vegetation change may influence the regional extent to which LUC alters climate. This sensitivity study uses the HadCM3 coupled climate model under a range of equilibrium forcings to show that the impact of LUC declines under increasing atmospheric CO2, specifically in temperate and boreal regions. A surface energy balance analysis is used to diagnose how these changes occur. In Northern Hemisphere winter this pattern is attributed in part to the decline in winter snow cover and in the summer due to a reduction in latent cooling with higher levels of CO2. The CO2-induced change in natural vegetation distribution is also shown to play a significant role. Simulations run at elevated CO2 yet present day vegetation show a significantly increased sensitivity to LUC, driven in part by an increase in latent cooling. This study shows that modelling the impact of LUC needs to accurately simulate CO2 driven changes in precipitation and snowfall, and incorporate accurate, dynamic vegetation distribution.
Resumo:
1. Bees are a functionally important and economically valuable group, but are threatened byland-use conversion and intensification. Such pressures are not expected to affect all species identically; rather, they are likely to be mediated by the species’ ecological traits. 2. Understanding which types of species are most vulnerable under which land uses is an important step towards effective conservation planning.3. We collated occurrence and abundance data for 257 bee species at 1584 European sites from surveys reported in 30 published papers (70 056 records) and combined them with species-level ecological trait data. We used mixed-effects models to assess the importance of land use (land-use class, agricultural use-intensity and a remotely-sensed measure of vegetation),traits and trait 9 land-use interactions, in explaining species occurrence and abundance.4. Species’ sensitivity to land use was most strongly influenced by flight season duration and foraging range, but also by niche breadth, reproductive strategy and phenology, with effects that differed among cropland, pastoral and urban habitats.5. Synthesis and applications. Rather than targeting particular species or settings, conservation action s may be more effective if focused on mitigating situations where species’ traits strongly and negatively interact with land-use pressures. We find evidence that low-intensity agriculture can maintain relatively diverse bee communities; in more intensive settings, added floral resources may be beneficial, but will require careful placement with respect to foraging ranges of smaller bee species. Protection of semi-natural habitats is essential, however; in particular, conversion to urban environments could have severe effects on bee diversity and pollination services. Our results highlight the importance of exploring how ecological traits mediate species responses to human impacts, but further research is needed to enhance the predictive ability of such analyses.
Resumo:
South American seasonally-dry tropical forests (SDTF) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12,000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8,000 and 7,000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined, but severe regional droughts persisted through the mid-Holocene, SDTF, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTF are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.