117 resultados para United Nations Framework Convention on Climate Change (Organização)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim  Species distribution models (SDMs) based on current species ranges underestimate the potential distribution when projected in time and/or space. A multi-temporal model calibration approach has been suggested as an alternative, and we evaluate this using 13,000 years of data. Location  Europe. Methods  We used fossil-based records of presence for Picea abies, Abies alba and Fagus sylvatica and six climatic variables for the period 13,000 to 1000 yr bp. To measure the contribution of each 1000-year time step to the total niche of each species (the niche measured by pooling all the data), we employed a principal components analysis (PCA) calibrated with data over the entire range of possible climates. Then we projected both the total niche and the partial niches from single time frames into the PCA space, and tested if the partial niches were more similar to the total niche than random. Using an ensemble forecasting approach, we calibrated SDMs for each time frame and for the pooled database. We projected each model to current climate and evaluated the results against current pollen data. We also projected all models into the future. Results  Niche similarity between the partial and the total-SDMs was almost always statistically significant and increased through time. SDMs calibrated from single time frames gave different results when projected to current climate, providing evidence of a change in the species realized niches through time. Moreover, they predicted limited climate suitability when compared with the total-SDMs. The same results were obtained when projected to future climates. Main conclusions  The realized climatic niche of species differed for current and future climates when SDMs were calibrated considering different past climates. Building the niche as an ensemble through time represents a way forward to a better understanding of a species' range and its ecology in a changing climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a “climate-smart food system” that is more resilient to climate change influences on food security.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How effective are multi-stakeholder scenarios building processes to bring diverse actors together and create a policy-making tool to support sustainable development and promote food security in the developing world under climate change? The effectiveness of a participatory scenario development process highlights the importance of ‘boundary work’ that links actors and organizations involved in generating knowledge on the one hand, and practitioners and policymakers who take actions based on that knowledge on the other. This study reports on the application of criteria for effective boundary work to a multi-stakeholder scenarios process in East Africa that brought together a range of regional agriculture and food systems actors. This analysis has enabled us to evaluate the extent to which these scenarios were seen by the different actors as credible, legitimate and salient, and thus more likely to be useful. The analysis has shown gaps and opportunities for improvement on these criteria, such as the quantification of scenarios, attention to translating and communicating the results through various channels and new approaches to enable a more inclusive and diverse group of participants. We conclude that applying boundary work criteria to multi-stakeholder scenarios processes can do much to increase the likelihood of developing sustainable development and food security policies that are more appropriate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change in the UK is expected to cause increases in temperatures, altered precipitation patterns and more frequent and extreme weather events. In this review we discuss climate effects on dissolved organic matter (DOM), how altered DOM and water physico-chemical properties will affect treatment processes and assess the utility of techniques used to remove DOM and monitor water quality. A critical analysis of the literature has been undertaken with a focus on catchment drivers of DOM character, removal of DOM via coagulation and the formation of disinfectant by-products (DBPs). We suggest that: (1) upland catchments recovering from acidification will continue to produce more DOM with a greater hydrophobic fraction as solubility controls decrease; (2) greater seasonality in DOM export is likely in future due to altered precipitation patterns; (3) changes in species diversity and water properties could encourage algal blooms; and (4) that land management and vegetative changes may have significant effects on DOM export and treatability but require further research. Increases in DBPs may occur where catchments have high influence from peatlands or where algal blooms become an issue. To increase resilience to variable DOM quantity and character we suggest that one or more of the following steps are undertaken at the treatment works: a) ‘enhanced coagulation’ optimised for DOM removal; b) switching from aluminium to ferric coagulants and/or incorporating coagulant aids; c) use of magnetic ion-exchange (MIEX) pre-coagulation; and d) activated carbon filtration post-coagulation. Fluorescence and UV absorbance techniques are highlighted as potential methods for low-cost, rapid on-line process optimisation to improve DOM removal and minimise DBPs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2oC temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4oC by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4oC pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an assessment of the implications of climate change for global river flood risk. It is based on the estimation of flood frequency relationships at a grid resolution of 0.5 × 0.5°, using a global hydrological model with climate scenarios derived from 21 climate models, together with projections of future population. Four indicators of the flood hazard are calculated; change in the magnitude and return period of flood peaks, flood-prone population and cropland exposed to substantial change in flood frequency, and a generalised measure of regional flood risk based on combining frequency curves with generic flood damage functions. Under one climate model, emissions and socioeconomic scenario (HadCM3 and SRES A1b), in 2050 the current 100-year flood would occur at least twice as frequently across 40 % of the globe, approximately 450 million flood-prone people and 430 thousand km2 of flood-prone cropland would be exposed to a doubling of flood frequency, and global flood risk would increase by approximately 187 % over the risk in 2050 in the absence of climate change. There is strong regional variability (most adverse impacts would be in Asia), and considerable variability between climate models. In 2050, the range in increased exposure across 21 climate models under SRES A1b is 31–450 million people and 59 to 430 thousand km2 of cropland, and the change in risk varies between −9 and +376 %. The paper presents impacts by region, and also presents relationships between change in global mean surface temperature and impacts on the global flood hazard. There are a number of caveats with the analysis; it is based on one global hydrological model only, the climate scenarios are constructed using pattern-scaling, and the precise impacts are sensitive to some of the assumptions in the definition and application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Puyasena et al. question our interpretation of climate-driven vegetation change on the Andean flank in western Amazonia during the middle Pleistocene and suggest that the use of Podocarpus spp. as a proxy of past climate change should be reassessed. We defend our assertion that vegetation change at the Erazo study site was predominantly driven by climate change due to concomitant changes recorded by multiple taxa in the fossil record.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reconstruction of past environmental change from Ecuador reveals the response of lower montane forest on the Andean flank in western Amazonia to glacial-interglacial global climate change. Radiometric dating of volcanic ash indicates that deposition occurred ~324,000 to 193,000 years ago during parts of Marine Isotope Stages 9, 7, and 6. Fossil pollen and wood preserved within organic sediments suggest that the composition of the forest altered radically in response to glacial-interglacial climate change. The presence of Podocarpus macrofossils ~1000 meters below the lower limit of their modern distribution indicates a relative cooling of at least 5°C during glacials and persistence of wet conditions. Interglacial deposits contain thermophilic palms suggesting warm and wet climates. Hence, global temperature change can radically alter vegetation communities and biodiversity in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g−1) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g−1) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 degrees C above present (approximately 2.7 degrees C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (< 500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 degrees C, whereas indicators of very severe impacts increase unabated beyond 2 degrees C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an assessment of the effects of climate change on river flow regimes in representative English catchments, using the UKCP09 climate projections. These comprise a set of 10,000 coherent climate scenarios, used here (i) to evaluate the distribution of potential changes in hydrological behaviour and (ii) to construct relationships between indicators of climate change and hydrological change. The study uses six catchments, and focuses on change in average flow, high flow (Q5) and low flow (Q95). There is a large range in hydrological change in each catchment between the plausible UKCP09 climate projections, with differences between catchments largely due to differences in catchment geology and baseline water balance. The range in change between the UKCP09 projections is in most catchments smaller than the range between changes with scenarios based on the CMIP3 ensemble of climate models, and earlier UK scenarios produce changes that tend towards the lower (drier) end of the UKCP09 range. The difference between emissions scenarios is small compared to the range across the 10,000 scenarios. Changes in high flows are largely driven by changes in winter precipitation, whilst changes in low flows are determined by changes in summer precipitation and temperature.